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Outcomes & Objectives
I Be proficient in solving Stackelberg (leader-follower) games.

I Model real-world interactions with leader-follower dynamics in various
applications.

I Develop a solution concept called Stackelberg equilibrium using principles
of backward induction to solve Stackelberg games.

I Be proficient with extensive-form games.
I Model perfectly observable multi-stage interactions in various examples

and real-world applications.
I Develop a solution concept called subgame perfect equilibrium via

extending the concept of Stackelberg equilibrium to multi-stage games.
I Develop a solution concept (inspired from subgame perfect equilibrium)

to solve Bayesian games in extensive-form.

I Be proficient in solving repeated games.
I Investigate the effects of long-term strategic interactions, as opposed to

short-term interactions.
I Develop a solution concept which accounts for temporal dynamics (e.g.

discounting behavior).
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Revising Nash Equilibrium...

I Consider a two-player game where Alice and Bob choose
mixed strategies (σa,σb) ∈ ∆(CA)×∆(CB) at equilibrium.

I MSNE: σa = arg max
x∈∆(CA)

σTb UAx and σb = arg max
y∈∆(CB)

yTUBσa.

I This means that Alice and Bob choose their strategies
simultaneously.

Will players choose (σa,σb) at equilibrium,
if they choose their strategies in a leader-follower setting?

Isn’t there a first mover advantage?
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Revising Nash Equilibrium... (cont...)
Consider the following game:

I PSNE: (U,L)
I Now, say Alice leads the game via announcing a strategy.
I However, such an announcement should be made via taking Bob’s response into

account. BRB(U) = L ⇒ UA = 2
BRB(D) = R ⇒ UA = 3

The equilibrium in this leader-follower game is (D,R)!
Note that the outcome is more favorable to Alice!
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Real-World Leader-Follower Interactions
I Airport Security: Cops are stationed strategically, and adversaries choose their

attack strategy.

I Markets: Big firms announce their strategies, after which new startups arise in
the market.

I Recommender Systems: Users make decisions after a recommendation is
presented to them.

Heinrich Von Stackelberg (1934)
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Equilibrium in Stackelberg Games
Consider a two-player game where Alice is the leader, and Bob is the follower.

I Assume the utility matrices at Alice and Bob are UA and UB respectively.
I Let Alice choose xa ∈ ∆(CA), and Bob choose xb ∈ ∆(CB).

Idea: Use backward induction
I Maximize Alice’s expected utility, while accounting for Bob’s response in the

next stage.

Definition

A Stackelberg equilibrium is a mixed strategy (σa,σb) ∈ ∆(CA)×∆(CB) such
that

σa = arg max
x∈∆(CA)

y∗(x)TUAx and σb = y∗(σa),

where y∗(x) = arg max
y∈∆(CB)

yTUBx is Bob’s best response to Alice’s strategy

x ∈ ∆(CA).

Theorem

Every two-player finite game admits a Stackelberg equilibrium.
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Stackelberg Competition in Markets
I Consider two firms with same product, with Firm 1 making the first move.
I Firm-i produces si ≥ 0 quantity at a cost ci per item.
I Unit Price: p(s1 + s2) = a− b(s1 + s2)
I Utility: Ui(s1, s2) = p(s1, s2)si − cisi

Firm 2’s Best Response: maxs2≥0 [a− b(s1 + s2)] s2 − c2s2
Differentiate w.r.t. s2 and equate it to zero:

a− bs1 − 2bs2 − c2 = 0.

In other words, s∗2(s1) =
1
2b

[a− c2 − bs1]+
Firm 1’s Commitment: maxs1≥0

[
a− b(s1 + s∗2(s1))

]
s1 − c1s1

I If s1 > a−c2
b

, then s∗2 = 0.
Differentiate w.r.t. s2 and equate it to zero:

a− 2bs1 − c1 = 0. ⇒ s∗1 =
[
a− c1

2b

]
+
.

I Else, s∗2(s1) =
1
2b

[a− c2 − bs1].
Differentiate w.r.t. s1 and equate it to zero:

a− 2bs1 +
b

2
s1 −

1
2

[a− c2 − bs1]− c1 = 0. ⇒ s∗1 =
[
a− 2c1 + c2

2b

]
+
.
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Stackelberg Prisoner’s Dilemma

I Two prisoners, Alice and Bob, are interrogated sequentially.

I Alice leads and decides whether to cooperate/defect, and Bob
picks a choice having seen Alice’s choice, as shown below.
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Alleviating First Mover’s Advantage...
Can we alleviate first mover’s advantage?

Follower needs to commit on their strategies, even if they do not make sense rationally!

Example: What if, in the following game, Player 2 declares to choose R if Player 1
chooses A?

I Commitment must be observable and irreversable!
I Many real-world examples:

I William, the Conqueror, ordered his soldiers to burn thier ships after
landing to prevent men from retreating!

I Hernn Corts sank his ships after landing in Mexico for the same reason.

The power to constrain an adversary depends on the power to bind oneself
– Thomas Schelling
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Solving Perfect Extensive-Form Games...
Consider the following extensive-form game:

Not all Nash equilibria makes sense in extensive-form!
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Subgame Perfect Equilibrium
Definition

Given a perfect-information extensive-form game G, the subgame of G rooted
at node h is the restriction of G to the descendants of h. The set of subgames
of G consists of all of subgames of G rooted at some node in G.

Definition

The subgame-perfect equilibrium (SPE) of a game G are all strategy profiles
s such that, for any subgame G′ of G, the restriction of s to G′ is a Nash
equilibrium of G′.

Claim

Every subgame perfect equilibrium is a Nash equilibrium.

Claim

Every finite extensive-form game has at least one subgame perfect equilibrium.

This is essentially called the principle of optimality in dynamic programming.
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SPE and Backward Induction
The underlying philosophy of SPE is:

Identify the equilibria in the “bottom-most” subgame trees, and assumes that those
equilibria will be played as one backs up sequentially to evaluate larger trees.

This is backward induction1.

Exercise:

1Backward induction is also called minimax algorithm in two-player zero-sum
games.
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Backward Induction: Concerns and
Challenges

SPE and Backward induction has their own share of concerns:

I Computationally infeasible in large extensive games.
I Example: Chess ( ∼ 10150 nodes.)
I Needs gradual development of tree using a heuristic search algorithm!
I Examples: Alpha-Beta Pruning, Monte-Carlo Tree Search

I Consider the following centipede game:

SPE ⇒ Players always choose to go down!

But, this is indeed a paradox at the second player!!!
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Solving Imperfect Extensive Games...

What if, we have information sets in the game?
Consider the following example:

Note that the subgame at Player 2’s node is the smallest subgame!

I Idea: Reduce this subgame into its strategic game and continue – Inefficient!
I Can we operate directly on the extensive-form representation?
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Is Subgame Perfect Equilibrium Suitable?

What do we mean by a subgame in imperfect extensive games?
What if, we define a subforest (a collection of subgames) at each information set?

Example:
I Pure strategies: P1 ⇒ {L,C,R},

P2 ⇒ {U,D}
I PSNE: (L,U), (R,D)

I Can either of these equilibria be
considered subgame perfect?

I Left subtree – U dominates D
I Right subtree – D dominates

U

I But, R dominates C at Player 1
I So, (R,D) is subgame perfect!

Lesson: The requirement that we need best responses in all subgames is too simplistic!
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Behavioral Strategies in Extensive Games

If the set of information sets at the ith player is denoted as Ii, then

I Pure strategies in extensive-form games are choice tuples at a given player,
where each entry is picked from one of his/her information sets.
Notation: ci = (ci,j1 , · · · , ci,jL

) ∈ Ci, where ci,j`
is the `th strategy in the jth

information set in Ii.

I Mixed strategies are lotteries on pure strategies.
Notation: σi ∈ ∆(Ci).

However, in extensive games, we can define another type of lottery, as shown below:

Definition

Given a extensive game Γ = (N , C, G, π, P, I,U), a behavioral strategy at
the ith player is a conditional lottery πi ∈ ∆(Di,s) on the choice set Di,s
available within the state (node) s in a given information set at the ith player.
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Behavioral Strategies: An Example

I Information Sets: I1 = {S11, S12}, I2 = {S21}

I Pure strategies: C1 = {(L, `), (L, r), (R, `), (R, r)}, C2 = {A,B}

I Mixed strategy: σ1 = {p1, p2, p3, 1− p1 − p2 − p3}, σ2 = {q, 1− q}

I Behavioral strategy for P1: π1 = {π11,π12}, where
I π11 = π1(S11) = {L : α11, R : 1− α11}
I π12 = π1(S12) = {` : α12, r : 1− α12}

I Behavioral strategy for P2: π2(S21) = {A : β21, B : 1− β21}.

Sid Nadendla (CS 5408: Game Theory for Computing) 17



Equivalence between Mixed and Behavioral
Strategies

Theorem

In a game of perfect recall, for any mixed strategy, there is an outcome-
equivalent behavioral strategy, and vice versa.

In the following example, we have

σ1 = {(L, `) : 0.5, (R, `) : 0.5} ≡ π1 = {π11 = {L : 0.5, R : 0.5}, π12 = {` : 1, r : 0}}

since Player 2 believes that Player 1 does not play r in S12, given σ1.
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Extensive Games with Imperfect Recall
Behavioral and mixed strategies are incomparable in general.

I Pure strategies: P1 ⇒ {L,R}, P2 ⇒ {U,D}
I Mixed strategy for P1: (L : π,R : 1− π)) – once P1 samples his/her mixed

strategy, that strategy will be chosen in both nodes within the information state.
I Unique NE: (R,D)
I Behavioral strategy at P1: {L : p,R : 1− p} (randomize afresh every time.)

I U1(D) = p [p+ 100(1− p)] + (1− p)2
I arg max

p∈[0,1]
U1(D) = p∗ =

98
198

.

I A new equilibrium in behavioral strategies:
{(

98
198 ,

100
198

)
, (0, 1)

}
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Equilibrium in Perfect-Recall Games
Eliminate nonsensical NE using behavioral strategies!

Definition

A extensive-form Nash equilibrium is a mixed strategy Nash equilibrium σ
that is equivalent to an assessment pair (π,µ), where the behavioral strategy
π is consistent with σ and a set of beliefs µ according to Bayes’ rule.

Can’t we operate directly on the tree representation?

Definition

A behavioral equilibrium is a pair (π,µ) which satisfies:
I Sequential Rationality: Given any alternative strategy π′i at the ith

player and his/her belief µi,js
on the state js within an information

set Ii,j , we have

ui(π|Ii,js ,µi,js
) ≥ ui(π′i,π−i|Ii,js ,µi,js

), and

I Consistency: Assuming that all the players picked a strategy π until
reaching a state s, there exists a belief µ(s) that is consistent with
Bayes’ rule.
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Example: Selten’s Horse
Induced Normal-Form Game:

Nash Equilibria:
I NE1 :

{
D : 1, c :

[
1
3 , 1
]
, L : 1

}
I NE2 :

{
C : 1, c : 1, σ3(R) ∈

[
3
4 , 1
]}

Behavioral Equilibrium:
I NE1 is not a behavioral equilibrium (violates sequential rationality at Player 2)
I NE2 is sequentially rational. But, how about the beliefs in I3?
I Let σε =

{
σε1(C) = 1− ε, σε2(d) = 2ε

1−ε , σ
ε
3(R) = σ3(R)− ε

}
, for a small ε.

I µ3,` =
σε1(D)

σε1(D) + σε1(C) · σε2(d)
=

1
3

.
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Sequential Equilibrium: A Refinement
Definition

An assessment pair (π,µ) is a sequential equilibrium if
1. Given any alternative strategy π′i at the ith player and his/her belief

µi,js
on the state js within an information set Ii,j , we have

ui(π|Ii,js ,µi,js
) ≥ ui(π′i,π−i|Ii,js ,µi,js

),

2. Consistency: Assuming that all the players picked a strategy π until
reaching a state s, there exists a belief µ(s) that is consistent with
Bayes’ rule.

3. Convergence: There exists a sequence
{(
π(n),µ(n)

)}∞
n=1

such that
(π,µ) = lim

n→∞

(
π(n),µ(n)

)
, where µn is a belief that is consistent

with the behavioral strategy πn, for all n = 1, 2 · · · .

Theorem

I Every finite game of perfect recall has a sequential equilibrium.

I Every subgame-perfect equilibrium is a sequential equilibrium, but the
converse is not true in general.
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Example: Selten’s Horse

Nash Equilibria:
I NE1 :

{
D : 1, c :

[
1
3 , 1
]
, L : 1

}
I NE2 :

{
C : 1, c : 1, σ3(R) ∈

[
3
4 , 1
]}

Behavioral Equilibrium:
I NE1 is not a behavioral equilibrium (violates sequential rationality at Player 2)

I NE2 is sequentially rational with µ3,` =
1
3

.

Sequential Equilibrium:
I NE1 is not a sequential equilibrium (violates sequential rationality at Player 2)

I For every equilibrium of type NE2, there exists a sequential equilibrium with
the following sequence:

I σε =
{
σε1(C) = 1− ε, σε2(d) = 2ε, σε3(R) = σ3(R)− ε

}
.

I µ3,` =
σε1(D)

σε1(D) + σε1(C)σε2(d)
=

1
3− 2ε

ε→0−→
1
3
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Perfect Bayesian Extensive-Form Games
I Let Θi denote the set of types of the ith player with a prior belief pi.
I Let p = {pi}i∈N be the profile of prior beliefs.
I Perfect Bayesian equilibrium ⇒ A generalization of behavioral equilibrium.

Definition

A pair (π,µ) is a perfect Bayesian equilibrium if
1. The mixed strategy profile π is sequentially rational, given µ.
2. There exists a belief system µ that is consistent with the mixed

strategy profile π and the prior belief about agents’ type p.

Theorem

Every finite Bayesian extensive game has a perfect Bayesian equilibrium.

Theorem

Every perfect Bayesian equilibrium is a Nash equilibrium.
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Signaling Games
Consider the following sender-receiver (signaling) game, where the sender is
characterized by one of the two types.

Sender’s strategies:
I Pooling Strategies: AA,BB – Sender does not reveal its type
I Separating Strategies: AB,BA – Sender reveals its type
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Signaling Games (cont...)

Two perfect Bayesian equilibria: Proof will be provided in a separate handout.

I Pooling Equilibrium: (AA, Y X) when µ(L|A) = 0.5 and µ(L|B) ≤ 0.5
I How did we compute µ(L|B) if Player 1 plays AA?
I Note: X is the best response to B only when µ(L|B) ≤ 0.5

I Separating Equilibrium: (BA, Y Y ) when µ(L|A) = 0 and µ(L|B) = 1.

Pooling in e-Bay markets: Buyers do not trust sellers who always signal high quality
products, regardless of their true type.
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Repeated Games

Repeated interactions stimulate agents to track players’ reputation over time
and design strategies either to retaliate, or to act prosocially.

I Why participate in free crowdsourcing platforms (e.g. Wikipedia, Google’s
Crowdsource) even though workers do not get paid?

I Why look after neighbor’s house when they are away?

Two types:
I Finite-Horizon Repeated Games – similar to extensive-form games
I Infinite-Horizon Repeated Games – no outcome nodes in the game!

Our Focus: Infinitely repeated games

How to define choices and utilities in an infinitely repeated game?

Sid Nadendla (CS 5408: Game Theory for Computing) 27



Choices in Infinitely Repeated Games
Definition

Assuming that the players only observe strategy profiles at the end of each
repetition stage, any choice in an infinitely repeated game is of the form

c = {c1, c2, · · · , ck, · · · } ∈ C∞,

where ci ∈ C1 × · · · × CN is the strategy profile chosen in the ith iteration.

Consider the following infinitely repeated prisoner’s dilemma:

⇒

I Defection Strategy: ci = (D1, D2), for all i = 1, 2, · · ·
I Grim (Trigger) Strategy: At the jth player, we have

ci,j =
{
Dj , if ct,−j = D−j
Cj , otherwise

, for all i = t+ 1, t+ 2, t+ 3, for any t = 1, 2, · · · .

Sid Nadendla (CS 5408: Game Theory for Computing) 28



Representing Choices as Finite Machines
I Uncountably infinite strategy spaces ⇒ High strategic complexity
I Finite automata ⇒ tractable way to study infinitely repeated choices.
I Moore machine: Current strategy at a given player is a function of his current

state, which in turn is computed using a transition function of the player’s
previous state and the strategy profile in the previous iteration.

si,t = h (si,t−1, ct−1)

Examples:
I Grim (Trigger) Strategy: Both players start playing C

I Tit-for-Tat (TfT): Both players start playing C
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Average Utilities
How should we define choice utilities in an infinitely repeated game?

Definition

Given an infinite sequence of one-stage utilities ui,1, ui,2, · · · at the ith player,
the average utility of the ith player is defined as

ūi = lim
k→∞

1
k

k∑
j=1

ui,j .

Claim

If the choice is represented as a Moore machine with the longest cycle T , then
the average utility of the ith player can be computed as

ūi =
1
T

T∑
j=1

ui,j .
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Discounted Utilities
What if, the players build frustration with time?

Definition

Given an infinite sequence of one-stage utilities ui,1, ui,2, · · · at the ith player,
and a discounting factor β ∈ [0, 1], the discounted utility of the ith player is
defined as

ūi = lim
k→∞

1
k

k∑
j=1

βj−1ui,j .

Claim

If the choice is represented as a Moore machine with the longest cycle T , then
the discounted utility of the ith player can be computed as

ūi =
1

(1− β)T

T∑
j=1

βj−1ui,j .
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Equilibrium: Repeated Prisoner’s Dilemma

⇒

Claim

(Grim,Grim) is a Nash equilibria in repeated Prisoner’s Dilemma with β-
discounted utilities, when β ≥ 1

2 .

I Assume P−i plays C−i for the first T times.
I Let Pi choose Ci for the first T − 1 times and then choose Di at time T .
I Then, Pi’s best response utility is

ui =
T−1∑
t=1

βt2 + 3βT +
∞∑

t=T+1

βt1

= 2
1− βT

1− β
+ 3βT + βT+1 1

1− β
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Equilibrium: Repeated Prisoner’s Dilemma
But, Grim includes the possibility where Ci can be played against C−i forever!

Is Ci a best response to C−i as well?

I Note that if Pi continued to play Ci for all t ≥ T , Pi’s best response utility is

ui =
T−1∑
t=1

βt2 + 2βT +
∞∑

t=T+1

βt2

= 2
1− βT

1− β
+ 2βT + βT+1 2

1− β

I Ci is the best response to C−i only when

2βT + βT+1 2
1− β

≥ 3βT + βT+1 1
1− β

, for any T.

I Upon simplification, Grim is the best response to Grim only when β ≥ 1
2 .

In other words, both players should be patient enough
for (Grim,Grim) to be a Nash equilibrium!
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Enforceability and Feasibility

Is there an easier way to validate, if a machine tuple is NE?

For that, we need to define two properties of utility profiles:

Definition

Given the minimax value of the ith player as vi = min
c(−i)

max
c(i)

ui(c(i), c(−i)),

the utility profile u = {u1, · · · , un} is enforceable, if ui ≥ vi holds true for all
i ∈ N .

Definition

A utility profile u = {u1, · · · , un} is feasible if there exists a lottery α ∈
∆(C∞) such that, for all i, we have

ui =
∑

c∈C∞

αcui(c).
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Folk’s Theorem
Folk’s theorem is actually a class of theorems, which characterizes equilibria in

different types of infinitely repeated games...

Theorem

Consider any n-player normal-form game Γ, which has an average utility profile
u = {u1, u2, · · · , un}, when repeated over an infinite time-horizon.

I If u is the utility profile for any Nash equilibrium c∗ of the infinitely
repeated Γ, then u is enforceable.

I If u is both feasible and enforceable, then u is the utility profile for
some Nash equilibrium c∗ of the infinitely repeated Γ.

Theorem

Consider any n-player normal-form game Γ, which has an discounted utility
profile u = {u1, u2, · · · , un} with some β ∈ [0, 1], when repeated over an
infinite time-horizon.

I If u is the utility profile for any Nash equilibrium c of the infinitely
repeated Γ, then u is enforceable.

I If u is both feasible and enforceable, then u is the utility profile for
some Nash equilibrium of the infinitely repeated Γ.
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Bounded Rationality in Repeated Games
I Best response analysis ⇒ Uncountably infinite comparisons. . .
I Can we define preference orders on Moore machines?

Definition

Given two machine tuples (M1, · · · ,MN ) and (M ′1, · · · ,M ′N ), we define a
preference order at the ith player as (M1, · · · ,MN ) �i (M ′1, · · · ,M ′N ), if

(ui(M1, · · · ,MN ),−|Mi|) �L
(
ui(M ′1, · · · ,M ′N ),−|M ′i |

)
where �L defines a lexicographical order in R2.

Definition

The tuple (Mi,M−i) is said to be a Nash-Rubinstein equilibrium in a repeated
game, if

(Mi,M−i) �i (M ′i ,M−i),

for any M ′i , for all i = 1, · · · , N .

Sid Nadendla (CS 5408: Game Theory for Computing) 36



Summary

I Stackelberg Games: How to define equilibria in leader-follower games?

I Perfect Extensive Games: How to solve perfect extensive games via the notion
of subgame perfect equilibrium?

I Imperfect Extensive Games: Subgame perfect equilibrium is no longer sufficient!
Then, how?

I Behavioral Equilibrium
I Sequential Equilibrium

I Perfect Bayesian Games: What if, there are chance nodes (due to unknown
agent types) in the game?

I Repeated Games: How to define choices and utilities in an infinitely repeated
game, and solve it?
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