Topic 3: Coalitional Games

Source: https://www.deutschland.de/sites/default/files/inline-

images/germany_elections_results_coalition_bundestag_2021_vote_spd_cdu_greens_left%20party_berlin_0.png

Outcomes & Objectives

Be proficient in solving coalitional games

- Model player's rationality in forming coalitions via defining a value of a given coalition.
- Identify some useful subclasses of games which produces some special coalitions.
- Develop a solution concept called Shapley value to distribute a coalition's value in a fair manner.
- Develop a solution concept called *core* that identifies a stable coalition structure in the game.

Lloyd Shapley

Shapley was the greatest game theorist of all time.

- Robert Aumann

Applications of Coalitional Games

- Political Coalitions: Parties form coalitions if the elections did not result in one party with a majority votes. Coalitional governments resolve such concerns. However, the question is which coalitions form stable governments.
- Cost Sharing for Network Design: Users benefit from being connected to a server. So they have to build up a broadcast tree. However, it costs to maintain the server/network and the question is how to share the costs.
- Queue Management: Multiple users want to route traffic through a switch, which has a flow dependent delay (cost). The queueing delay cost has to be shared among the users.

Coalitional Game: An Overview

Coalitions and Transferable Utilities

Definition

Given a set of players $\mathcal{N} = \{1, \cdots, N\}$, a *coalition* is a subset of \mathcal{N} . Furthermore, a *grand coalition* is the set of all players \mathcal{N} .

Definition

A characteristic function game Γ is a pair (\mathcal{N}, v) , where \mathcal{N} is the set of players, and $v : 2^{\mathcal{N}} \to \mathbb{R}$ is a characterisic function, which assigns each coalition $\mathcal{C} \subseteq \mathcal{N}$, some real value $v(\mathcal{C})$.

Definition

A characteristic function game $\Gamma = (\mathcal{N}, v)$ is a *transferable utility game*, if the value of any coalition $v(\mathcal{C})$ can be distributed amongst the members in \mathcal{C} in any way that the members of \mathcal{C} choose.

Standard Assumptions:

- The value of a empty coalition is 0.
- $\blacktriangleright \quad v(\mathcal{C}) \ge 0, \text{ for any } \mathcal{C} \subseteq \mathcal{N}.$

Example

A fictional country X has a 101-member parliament, where each representative belongs to one of the three parties:

- Liberal (L): 40 representatives
- ▶ Moderate (*M*): 31 representatives
- ► Conservative (C): 30 representatives

The parliament needs to decide how to allocate \$1bn of discretionary spending, and each party has its own preferred way of using this money. The decision is made by a simple **majority vote**, and we assume that all representatives vote along the party lines.

Parties can form **coalitions**; a coalition has value \$1bn if it can win the budget vote no matter what the other parties do, and value 0 otherwise.

This situation can be modeled as a three-player characteristic function game, where the set of players is $\mathcal{N} = L, M, C$ and the characteristic function is given by

$$v(\mathcal{C}) = \begin{cases} 0, & \text{if } |\mathcal{C}| \le 1, \\ 10^9, & \text{otherwise.} \end{cases}$$

Coalition Structure

Definition

Given a characteristic function game $\Gamma = (\mathcal{N}, v)$, a *coalition structure* \mathcal{C} is a partition of \mathcal{N} . In other words, \mathcal{C} is a collection of non-empty subsets $\{\mathcal{C}_1, ..., \mathcal{C}_K\}$ such that

•
$$\bigcup_{k \in \{1, \dots, K\}} C_k = \mathcal{N}, \text{ and }$$

•
$$C_i \cap C_j = \emptyset$$
, for any $i, j \in \{1, ..., K\}$ such that $i \neq j$.

Definition

A vector $u = \{u_1, \cdots, u_N\} \in \mathbb{R}^N$ is the *utility profile* for a coalition structure $C = \{C_1, \cdots, C_K\}$ over N if

• Non-Negativity: $u_i \ge 0$ for all $i \in \mathcal{N}$, and

• **Feasibility:**
$$\sum_{i \in C_k} u_i \leq v(C_k)$$
 for any $k \in \{1, \dots, K\}$.

Outcome, Efficiency and Social Welfare

Definition

The *outcome* of a game Γ is a pair (\mathcal{C}, u) .

Definition

An outcome (\mathcal{C}, u) is *efficient*, if all the utilities are distributed amongst the coalition members, i.e.

$$\sum_{i \in \mathcal{C}_k} u_i = v(\mathcal{C}_k), \text{ for all } k = 1, \cdots, K.$$

Definition

The social welfare of a coalition structure $\ensuremath{\mathcal{C}}$ is

$$v(\mathcal{C}) = \sum_{k=1}^{K} v(\mathcal{C}_k)$$

Individual Rationality and Imputation

Definition

A player i is said to be *individually rational* in an outcome (\mathcal{C}, u) , if

 $u_i \ge v(\{i\}),$

where $v(\{i\})$ is the value of the coalition $\{i\},$ which only contains the i^{th} player.

Definition

A outcome (\mathcal{C}, u) is said to be an *imputation*, if it is efficient, and if every player is individually rational within itself.

- Each player weakly prefers being in the coalition structure, than being on his/her own.
- ► Group deviations ⇒ Stability of Coalitions (covered later)

Monotone Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *monotone* if it satisfies $v(\mathcal{C}) \leq v(\mathcal{D})$, for every pair of coalitions $\mathcal{C}, \mathcal{D} \subseteq \mathcal{N}$, such that $\mathcal{C} \subseteq \mathcal{D}$.

- Most games are monotone!
- However, non-monotonicity may arise because
 - some players intensely dislike each other, or
 - communication costs increase nonlinearly with coalition size.

Example: Three commuters can share a taxi. Individual journey costs: $P_1 : 6$, $P_2 : 12$, $P_3 : 42$. Then, the following characteristic function results in a monotone game:

$$w_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 12 & \text{if } \mathcal{C} = \{1,2\} \\ 42 & \text{if } \mathcal{C} = \{1,3\} \\ 42 & \text{if } \mathcal{C} = \{2,3\} \\ 42 & \text{if } \mathcal{C} = \{1,2,3\}. \end{cases}$$

Superadditive Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *superadditive* if it satisfies $v(\mathcal{C} \cup \mathcal{D}) \ge v(\mathcal{C}) + v(\mathcal{D})$, for every pair of disjoint coalitions $\mathcal{C}, \mathcal{D} \subseteq \mathcal{N}$.

Proposition

If a superadditive game $\Gamma=\{\mathcal{N},v\}$ has a non-negative characteristic function v, then Γ is monotone.

Proof: For any pair of coalitions $\mathcal{C} \subseteq \mathcal{D}$, we have

$$v(\mathcal{C}) \leq v(\mathcal{D}) - v(\mathcal{D} - \mathcal{C}) \leq v(\mathcal{D}).$$

- Monotonicity $\neq \Rightarrow$ superadditivity. (Example: $v(\mathcal{C}) = \log |\mathcal{C}|$.)
- ► Always profitable for two groups to join forces ⇒ Grand Coalition.
- Anti-trust or anti-monopoly laws ⇒ Non-superadditive games.

Superadditive Games: Example

Consider the same taxi example:

- Three commuters can share a taxi. Individual journey costs: $P_1: 6, P_2: 12, P_3: 42.$
- Then, $v_1(\mathcal{C})$ is not superadditive.
- ▶ However, the following characteristic function results in a superadditive game:

$$v_2(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 18 & \text{if } \mathcal{C} = \{1, 2\} \\ 48 & \text{if } \mathcal{C} = \{1, 3\} \\ 55 & \text{if } \mathcal{C} = \{2, 3\} \\ 80 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$$

Convex Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *convex* if the characteristic function v is supermodular, i.e., it satisfies $v(\mathcal{C} \cup \mathcal{D}) + v(\mathcal{C} \cap \mathcal{D}) \ge v(\mathcal{C}) + v(\mathcal{D})$ for every pair of coalitions $\mathcal{C}, \mathcal{D} \subseteq \mathcal{N}$.

Proposition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is convex, if and only if, for every pair of coalitions \mathcal{C}, \mathcal{D} such that $\mathcal{C} \subset \mathcal{D}$, and for every player $i \in \mathcal{N} - \mathcal{D}$, we have

 $v(\mathcal{C} \cup \{i\}) - v(\mathcal{C}) \le v(\mathcal{D} \cup \{i\}) - v(\mathcal{D})$

- Players become more useful if they join bigger coalitions.
- ► Convexity ⇒ Superadditivity.
- However, the converse may not be true!

3-player majority game: Consider a game $\Gamma = (\mathcal{N}, v)$, where $\mathcal{N} = \{1, 2, 3\}$, and $v(\mathcal{C}) = 1$ if $|\mathcal{C}| \ge 2$, and $v(\mathcal{C}) = 0$ otherwise. This game is superadditive. On the other hand, for $\mathcal{C} = \{1, 2\}$ and $\mathcal{D} = \{2, 3\}$, we have $v(\mathcal{C}) = v(\mathcal{D}) = 1$, $v(\mathcal{C} \cup \mathcal{D}) = 1$, $v(\mathcal{C} \cap \mathcal{D}) = 0$.

Simple Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *simple* if it is monotone and its characteristic function only takes values 0 and 1, i.e. $v(\mathcal{C}) \in \{0, 1\}$, for any $\mathcal{C} \subseteq \mathcal{N}$.

- ▶ $v(C) = 1 \Rightarrow$ Winning Coalition.
- ▶ $v(C) = 0 \Rightarrow$ Loosing Coalition.

Claim

A simple game $\Gamma=\{\mathcal{N},v\}$ is superadditive, only if the complement of every winning coalition looses.

Solution Concepts

Outcomes can be evaluated based on two sets of criteria:

- ► Fair Distribution: How well each agent's payoff reflects his/her contribution?
 - Shapley Value
 - Banzhaf Index
- Coalition Stability: What are the incentives for the agents to stay in the coalition structure?
 - Stable Set
 - Core
 - Nucleolus
 - Bargaining Set

Fair Distribution: Shapley's Axioms

Let u_i^{Γ} denote the allocation (utility) to the i^{th} player in a game $\Gamma = \{N, v\}$. Then, we desire the following four properties:

• Efficiency: Distribute the value of grand coalition to all agents, i.e.

$$\sum_{i\in\mathcal{N}} u_i^{\Gamma} = v(\mathcal{N}).$$

Dummy Player: If a player *i* does not contribute to any coalition in Γ , then

$$u_i^{\Gamma} = 0.$$

Symmetry: If two players i and j contribute equally to each coalition in Γ , then

$$u_i^{\Gamma} = u_j^{\Gamma}.$$

• Additivity: If the same set of players are involved in two coalitional games $\Gamma_1 = (\mathcal{N}, v_1)$ and $\Gamma_2 = (\mathcal{N}, v_2)$, if we define $\Gamma = \Gamma_1 + \Gamma_1 = (\mathcal{N}, v_1 + v_2)$, then for every player *i*, we have

$$u_i^{\Gamma} = u_i^{\Gamma_1} + u_i^{\Gamma_2}.$$

Finding a Fair Distribution...

Assume we have a superadditive game, which results in a grand coalition!

- Agent's allocation is proportional to his/her contribution in $v(\mathcal{N})$.
- ▶ Idea: As each agent joins to form the grand coalition, compute how much the value of the coalition increases, i.e., allocate $u_i = v(N) v(N \{i\})$ to player *i*.

This contribution is evaluated when the player is the last inclusion in \mathcal{N} .

But, what about players who joined the coalition before the last player?

Let $\Pi_{\mathcal{N}}$ denote the set of all permutations of \mathcal{N} , i.e., one-to-one mappings from \mathcal{N} to itself. Given a permutation $\pi \in \Pi_{\mathcal{N}}$, we denote by $S_{\pi}(i)$ the set of all predecessors of i in π , i.e., we set

$$S_{\pi}(i) = \{ j \in \mathcal{N} \mid \pi(j) < \pi(i) \}.$$

Example: If $\mathcal{N} = \{1, 2, 3\}$, we have

$$\Pi_{\mathcal{N}} = \{\{1, 2, 3\}, \{1, 3, 2\}, \{2, 1, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{3, 2, 1\}\}.$$

Then, if $\pi = \{2, 1, 3\}$, we have

$$S_{\pi}(2) = \emptyset$$
 $S_{\pi}(1) = \{2\}$ $S_{\pi}(3) = \{1, 2\}$

Shapley Value

Definition

The marginal contribution of an agent i with respect to a permutation π in a game $\Gamma = (\mathcal{N}, v)$ is given by

$$\Delta_{\pi}^{\Gamma}(i) = v \left[S_{\pi}(i) \cup \{i\} \right] - v \left[S_{\pi}(i) \right].$$

Definition

Given a characteristic function game $\Gamma = (N, v)$ with |N| = N, the **Shapley** value of an agent $i \in N$ is given by

$$u_i(\Gamma) = \frac{1}{N!} \sum_{\pi \in \Pi_{\mathcal{N}}} \Delta_{\pi}^{\Gamma}(i).$$

Theorem

Shapley's axioms *uniquely* characterize Shapley value. In other words, Shapley value is the only fair distribution scheme that satisfies all the Shapley's axioms.

Shapley Value: Example

Consider the same ridesharing example, as stated earlier.

- Three commuters can share a taxi.
- Individual journey costs: $P_1: 6, P_2: 12, P_3: 42$.
- The characteristic function is

$$v_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 12 & \text{if } \mathcal{C} = \{1,2\} \\ 42 & \text{if } \mathcal{C} = \{1,3\} \\ 42 & \text{if } \mathcal{C} = \{2,3\} \\ 42 & \text{if } \mathcal{C} = \{1,2,3\}. \end{cases}$$

Permutation set $\Pi_{\mathcal{N}} = \{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6\}$, where

$$\pi_1 = \{1, 2, 3\}, \quad \pi_2 = \{1, 3, 2\}, \quad \pi_3 = \{2, 1, 3\}, \\ \pi_4 = \{2, 3, 1\}, \quad \pi_5 = \{3, 1, 2\}, \quad \pi_6 = \{3, 2, 1\}.$$

Shapley Value: Example (cont...)

and

Given

$$\begin{aligned} &\pi_1 = \{1,2,3\}, \quad \pi_2 = \{1,3,2\}, \\ &\pi_3 = \{2,1,3\}, \quad \pi_4 = \{2,3,1\}, \\ &\pi_5 = \{3,1,2\}, \quad \pi_6 = \{3,2,1\}, \end{aligned}$$

$$v_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 12 & \text{if } \mathcal{C} = \{1,2\} \\ 42 & \text{if } \mathcal{C} = \{1,3\} \\ 42 & \text{if } \mathcal{C} = \{2,3\} \\ 42 & \text{if } \mathcal{C} = \{1,2,3\}. \end{cases}$$

Marginal contributions:

•
$$\pi_1: \Delta_1^{\Gamma}(1) = 6, \Delta_1^{\Gamma}(2) = 6, \Delta_1^{\Gamma}(3) = 30$$

•
$$\pi_2: \Delta_2^{\Gamma}(1) = 6, \Delta_2^{\Gamma}(2) = 0, \Delta_2^{\Gamma}(3) = 36$$

•
$$\pi_3: \ \Delta_3^{\Gamma}(1) = 0, \ \Delta_3^{\Gamma}(2) = 12, \ \Delta_3^{\Gamma}(3) = 30$$

•
$$\pi_4: \ \Delta_4^{\Gamma}(1) = 0, \ \Delta_4^{\Gamma}(2) = 12, \ \Delta_4^{\Gamma}(3) = 30$$

•
$$\pi_5: \Delta_5^{\Gamma}(1) = 0, \Delta_5^{\Gamma}(2) = 0, \Delta_5^{\Gamma}(3) = 42$$

•
$$\pi_6: \Delta_6^{\Gamma}(1) = 0, \Delta_6^{\Gamma}(2) = 0, \Delta_6^{\Gamma}(3) = 42$$

Sid Nadendla (CS 5408: Game Theory for Computing)

Shapley value:

•
$$u_1(\Gamma) = \frac{1}{6} \sum_{i=1}^{6} \Delta_i^{\Gamma}(1) = 2$$

• $u_2(\Gamma) = \frac{1}{6} \sum_{i=1}^{6} \Delta_i^{\Gamma}(2) = 5$
• $u_3(\Gamma) = \frac{1}{6} \sum_{i=1}^{6} \Delta_i^{\Gamma}(3) = 35$

21

Stability of Coalitions: Core

- Consider a characteristic function game $\Gamma = \{N, v\}$ with an outcome (\mathcal{C}, u) .
- ▶ Let *u*(*C*) denote the total payoff of a coalition *C* under *u*.
- ▶ Given a coalition C, if u(C) < v(C), some agents can abandon C and form their own coalition.</p>

Definition A utility profile u is *stable* through a coalition C if $\sum_{i \in C} u_i \ge v(C).$

Definition

Core is defined as the set of all stable utility profiles, which is denoted as

$$\mathbb{C} = \left\{ \boldsymbol{u} \in \mathbb{R}^N_+ \; \left| \; \sum_{i \in \mathcal{C}} u_i \geq v(\mathcal{C}), \; \text{for all } \mathcal{C} \subset \mathcal{N} \right. \right\}$$

Core: An Example

Consider a characteristic function game $\Gamma = \{\mathcal{N}, v\}$, where $\mathcal{N} = \{1, 2, 3\}$ and

- Then, the utility profiles are those such that $u_1 + u_2 + u_3 = 8$ such that $u_1 \ge 1$, $u_2 \ge 0$ and $u_3 \ge 1$.
- This is a hyperplane with vertices (7,0,1), (1,0,7), and (1,6,1).

Is core always non-empty?

Core in Convex and Simple Games

Theorem

Any convex game $\Gamma = (\mathcal{N}, v)$ has a non-empty core.

Definition

In a characteristic function game $\Gamma = (\mathcal{N}, v)$, a player i is called a *veto player*, if $v(\mathcal{C}) = 0$ for all $\mathcal{C} \subseteq \mathcal{N} - \{i\}$.

Theorem

A simple game $\Gamma = (\mathcal{N}, v)$ has a non-empty core, if and only if there is a veto player in \mathcal{N} . Moreover, a utility profile u is in the core of Γ if and only if $u_i = 0$ for every player i, who is not a veto player in Γ .

Core and Superadditive Covers

Definition

 $\Gamma^* = (\mathcal{N}, v^*)$ is called a *superadditive cover* of $\Gamma = (\mathcal{N}, v)$ if, for every coalition $\mathcal{C} \subseteq \mathcal{N}$,

$$v^*(\mathcal{C}) = \max_{\mathcal{P}_{\mathcal{C}}} \sum_{\mathcal{C}_i \in \mathcal{P}_{\mathcal{C}}} v(\mathcal{C}_i),$$

where $\mathcal{P}_{\mathcal{C}}$ denotes a partition of the coalition $\mathcal{C}.$

$$\begin{aligned} \text{Consider } \Gamma &= (\mathcal{N}, v) \colon \mathcal{N} = \{1, 2, 3\} \text{ and} \\ v(\mathcal{C}) &= \begin{cases} 5 & \text{if } \mathcal{C} = \{1\} \\ 0 & \text{if } \mathcal{C} = \{2\} \\ 0 & \text{if } \mathcal{C} = \{3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2\} \\ 1 & \text{if } \mathcal{C} = \{1, 3\} \\ 1 & \text{if } \mathcal{C} = \{2, 3\} \\ 1 & \text{if } \mathcal{C} = \{2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\} . \end{cases} \end{aligned}$$

Theorem

A characteristic function game $\Gamma = (\mathcal{N}, v)$ has a non-empty core if and only if its superadditive cover $\Gamma^* = (\mathcal{N}, v^*)$ has a non-empty core.

Summary

- Characteristic function game: How to model players' rationality in coalitional games?
- ▶ Subclasses: Are there any special games that result in some specific coalitions?
- Shapley value: How to distribute a coalition's value in a fair manner amongst its members?
- Core: What is a stable coalition?