
Topic 2: Basic Models
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Outcomes & Objectives
I Be proficient in modeling games mathematically

I Apply decision-theoretic concepts (e.g. lotteries, utilities) to model agent
decisions and outcomes in a game.

I Use mathematical structures (e.g. matrices, graphs) to represent the
state of the game.

I Transform from one representation to another (e.g. extensive-form to
normal-form and vice versa).

I Identify some useful properties in games (e.g. zero-sum games, games
with information asymmetry, Bayesian games).

I Be proficient with basic solution approaches.
I Iterative Elimination of Dominated Strategies
I Minimax Equilibrium
I Nash Equilibrium
I Bayesian Nash Equilibrium

I Apply game theory in various applications.
I Congestion games in transportation
I MAC-layer games in computer/wireless networks
I Game-theoretic security
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Games: Types and Representations
Definition

Game is a strategic framework where multiple intelligent
agents interact with one another through their rational
decisions.

Types of games:
I Non-cooperation vs. Cooperation
I Static vs. Dynamic
I Perfect-information vs. imperfect-information
I Complete-information vs. incomplete-information

Two basic representations:
I Normal/Strategic Form: Matrix Representation
I Extensive Form: Graph (Decision-Tree) Representation
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Normal-Form Representation

Definition

A normal-form (or a strategic-form) game Γ is de-
fined as a triplet (N , C,U), where

I N = {1, · · · , N} is the set of N players (agents),

I C = C1 × · · · × CN is the strategy profile space,
where Ci represents the set of strategic choices
(actions) available at the ith player,

I U = {u1, · · · , uN} is the set of utility functions,
where ui : Ci → R represents the utility function at
the ith player.
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Example: Matching Pennies
Two players toss their respective coins and compare their outcomes.

I N = {1, 2} (Two-player game),

I C = {H,T} × {H,T},

I U = {u1, u2}, where ui : Ci → {−1, 1} such that u1 +u2 = 0.
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Matching Pennies: Applications
I Sports: Soccer penalty kicks, Tennis serve-and-return plays

I Security: Attack-defense games in computer security, cops
vs. adversaries in airports

Allied landing in Europe on June 6, 1944: Normandy vs. Calais
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Example: Prisoner’s Dilemma
Two prisoners involved in the same crime are being interrogated
simultaneously in separate rooms. They can either cooperate or

defect with the interrogators.

I N = {P1, P2}

I C = {C,D} × {C,D}

I U = {u1, u2}, where ui : Ci → R, as shown in the matrix
below.
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Prisoner’s Dilemma: Applications

I Networking: CSMA with Collision Avoidance (a.k.a. TCP
User’s Game)

I Climate Change Politics: No country is motivated to curb
CO2 emissions for selfish reasons, although every country
benefits from a stable climate.

I Advertising: Two competiting firms can either advertise, or
not advertise about their products at a given time.

I Peer-to-Peer File Sharing: BitTorrent’s unchoking
strategies in search of cooperative peers to optimize downlink
data-rates resemble those in this game.

Captures lack of trust between players!
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Example: Tragedy of the Commons
I N = {F1, · · · , Fn}
I Farmer i (Fi): Keep the sheep or not (si ∈ {0, 1})
I Payoff for keeping the sheep = 1 unit
I Village has limited stretch of grassland
I Damage to environment = 5 units (shared equally by all farmers)

Net utility at Fi: ui(s1, · · · , sn) = si − 5
[
s1 + · · ·+ sn

n

]
If n = 2:
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Tragedy of the Commons: Applications
Application: Spectrum Commons

I 3650 MHz (50 MHz block): Licensed Commons

I Wifi (2.4 GHz, 5 GHz): Unlicensed Commons

A multi-player generalization of Prisoner’s Dilemma!
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Extensive-form representation captures
more information!

I state evolution in a game and the corresponding choice sets

I order of moves

I information available throughout the game

Play-Order in Matching Pennies:
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Observability: Perfect vs. Imperfect
Information

Definition

A game where every agent can observe every other player’s
actions is called a perfect information game.

Example: Chess

Imperfect Information: Player’s actions are not observable!
Example: Poker

Games which are sequential, and which have chance events, but no
secret information, are considered games of perfect information.

Example: Monopoly (uncertainty due to rolling dice.)
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More on Imperfect Information Games...

Games with simultaneous moves are generally considered imperfect
information games!

Matching Pennies with Simultaneous Moves:

Group all indistinguishable states into sets to disclose available
information at each agent!
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Nature’s Role in Games
I Players play the left game with probability p,
I Players play the right game with probability 1− p,
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Agent Types: Complete vs. Incomplete
Information

Sometimes, players may not know each others’ types.
Such games are called incomplete-information (or Bayesian) games.

Definition

A Bayesian (or incomplete information game) game Γ is defined as a tuple
(N ,Θ,p, C,U), where
I N = {1, · · · , N} is the set of N players (agents),

I Θ = {Θ1, · · · ,ΘN}, where Θi is the set of types of player i,

I p = {p1, · · · , pN}, where pi : Θi → ∆(Θ−i) is the conditional belief
over the set of types of other players, given the type of player i,

I C = C1 × · · · × CN is the strategy profile space, where Ci represents
the set of strategic choices (actions) available at the ith player,

I U = {u1, · · · , uN} is the set of utility functions, where ui : Ci → R
represents the utility function at the ith player.

Example: Competition in Job Markets
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Information Sets

I Imperfect observations, nature’s randomness and
incomplete information about the players’ types
⇒ State uncertainty.

I State uncertainty ⇒ Limited information at the agent.

Definition

An information set Ii of the ith player Pi is the set of
that decision nodes at Pi that are indistinguishable to Pi
itself.
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Extensive-Form Games: Formal Definition

Definition

An extensive-form game Γ is defined as a tuple Γ = (N , C, G, π, P, I,U),
where
I N = {1, · · · , N} is the set of N players (agents),
I C = C1 × · · · × CN is the strategy profile space,
I G is a decision tree rooted at node 0 (chance node) with vertices

representing the game’s states and edges representing different player
decisions,

I π represents the chance probabilities at all the alternatives available at
the chance node,

I P : G̃→ N represents the player function that associates each proper
subhistory G̃ ∈ G to a certain player,

I I = {I1, · · · , IN} represents the set of information sets at all the
players,

I U = {u1, · · · , uN} is the set of utility functions.

Sid Nadendla (CS 5408: Game Theory for Computing) 17



Equivalence of Representations

Can we eliminate temporal dynamics in extensive-form
games to gain substantial conceptual simplification, if

questions of timing are inessential to our analysis?

Note: This is not straightforward, i.e.,

Γe = (N , C, G, π, P, I,U) ; Γ = (N , C,U)

due to the presence of information sets I, play-order, and nature’s
randomness in π.
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Equivalence of Representations (cont...)
Example: Consider the following two Matching Pennies games with
non-identical information sets...
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Equivalence of Representations (cont...)
Exercise: Transform the following extensive-form game into a
normal-form representation:
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Transformation in Large Games is Difficult!
Example: Tic-Tac-Toe

I N = {1, 2}
I Environment: 3× 3 grid
I Player 1: Place a cross (x) in a blank space
I Player 2: Place a nought (◦) in a blank

space
I Possible outcomes: Win, Loose, Draw
I The first player to have three symbols in

straight line wins. The other player looses.

Natural to represent in extensive-form...
How about normal-form representation?

Extensive-form representationa:

a
Source: K. Binmore, “Playing for Real: A Text on Game Theory,”

Oxford University Press, 2007.
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Solution Concepts for Normal-Form Games

Assume that we can always transform an extensive-form game
into a normal-form equivalent.

Specifically, we will focus on the following solution concepts:
I Iterative Elimination of Dominated Strategies
I Minimax Equilibrium
I Nash Equilibrium
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Iterative Elimination of Dominated
Strategies

Can we use the notion of dominance to solve games?

Idea: Eliminate one or more dominated strategies at each player in
an iterative manner...
Consider the following game:
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Iterative Elimination of Dominated
Strategies (cont...)

Step 1: a3 % a4 ⇒ Eliminate a4

Step 2: b3 % b4 ⇒ Eliminate b4
Step 3: a2 % a3 ⇒ Eliminate a3

Step 4: b2 % b1 ⇒ Eliminate b1
Step 5: a2 % a1 ⇒ Eliminate a1

Step 6: b2 % b3 ⇒ Eliminate b3
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Pure/Mixed Strategies

Definition

Given a choice (strategy) set Ci at player i, then every c ∈ Ci
is called a pure strategy.

Definition

Given a player i with a set of pure strategies Ci, a mixed
strategy σi is a lottery over Ci.
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Zero-Sum Games
Definition

A zero-sum game is the one in which the sum of individual
players’ utilities for each outcome sum to zero.

Example: Matching Pennies.

In two-player zero-sum games, if Alice (Player 1) wins, Bob (Player 2) looses, and vice
versa. Therefore, w.l.o.g, we represent the utility matrix using Alice’s utilities.
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Minimax Equilibrium
Worst-Case Analysis:
I Alice minimizes her maximum utility (min-max strategy).
I Bob maximizes his minimum utility (max-min strategy).

max
a∈CA

(
min
b∈CB

u(a, b)
)
≤ u(a, b) ≤ min

b∈CB

(
max
a∈CA

u(a, b)
)

Minimax equilibrium is a saddle point in utilities!
Example:
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Minimax Equilibrium (cont...)
Example 2:

Minimax equilibrium may not exist in pure strategies!
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Minimax Equilibrium (cont...)
Minimax equilibrium exists in mixed strategies within finite games!

I Alice minimizes her maximum expected utility (min-max strategy).
I Bob maximizes his minimum expected utility (max-min strategy).

max
pa∈∆(CA)

(
min

pb∈∆(CB)
u(pa, pb)

)
≤ u(pa, pb) ≤ min

pb∈∆(CB)

(
max

pa∈∆(CA)
u(pa, pb)

)

Example: Matching Pennies

EU: u(pa, pb) = 1− 2pa − 2pb + 4papb

Gradiant:

∇u =


∂u

∂pa

∂u

∂pb

 = 0 ⇒ pa = pb =
1
2

Hessian matrix: |∇2u| < 0 ⇒ Saddle
Point!

∇2u =


∂2u

∂p2
a

∂2u

∂pb∂pa

∂2u

∂pa∂pb

∂2u

∂p2
b

 =
[

0 4
4 0

]
.
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Best Response of a Player
Definition

Given a strategic form game Γ = (N , C,U) and a strategy
profile c−i ∈ C−i, we say ci ∈ Ci is a best response of player
i with respect to c−i if

ui(ci, c−i) ≥ ui(c′i, c−i), for all c′i ∈ Ci.

Example: Consider the Matching Pennies game.

I BR1(P2  H) = H

I BR1(P2  T ) = T

I BR2(P1  H) = T

I BR2(P1  T ) = H
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Nash Equilibrium: A Solution Concept

No player should have the motivation to unilaterally deviate
from their respective strategies!

In other words, every player picks a best response to all the other players’ strategies.

Definition

Given a normal (strategic) form game Γ = (N , C,U), we
call a strategy profile (c1, · · · , cN ) a pure-strategy Nash
equilibrium (PSNE) if ui(ci, c−i) ≥ ui(c′i, c−i), for all c′i ∈
Ci, for all i ∈ N .
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Computing PSNE: Battle of the Sexes
Description:
I Two-player coordination game.
I Husband (H): Prefers football game

over movie
I Wife (W ): Prefers movie over

football game
Best-Response and Equilibrium Analysis:
I BRH(W  F ) = F

I BRH(W  M) = M

I BRW (H  F ) = F

I BRW (H  M) = M

I PSNE: (F, F ), (M,M)

Application: Distributed Resource Allocation Games (e.g. 5G Networks)
I Tasks can be performed only when various resources (e.g. computational power,

wireless spectrum) are available simultaneously.

Motivates players to form groups (or coalitions)!
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Computing PSNE: Cournot’s Duopoly
I Two firms produce identical item of quantities q1 and q2, while incurring 4c

units of cost/quantity.
I Market clearing price: p(q) = 100− 2q, where q = q1 + q2.

Utility of the Firm-i: ui(q1, q2) = qi · p(q1 + q2)− 4c · qi

If Firm-{−i} produces q−i, then Firm-i finds its best response as follows:

∂ui(qi, q−i)
∂qi

= 100− 2(qi + q−i)− 2qi − 4c = 0.

At NE, since both firms play best responses with each other, we have...

System of two best-response equations:
I BR1(q2)⇒ 2q1 + q2 = 50− 2c
I BR2(q1)⇒ q1 + 2q2 = 50− 2c

Solving them, we obtain

q∗1 = q∗2 =
50− 2c

3
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Computing PSNE: Potential Games
Definition

A function Φ : C → R is called an ordinal potential function for the game Γ,
if for all i ∈ N and all c−i ∈ C−i,

ui(c, c−i)− ui(c′, c−i) > 0, iff Φ(c, c−i)− Φ(c′, c−i) > 0, for all c, c′ ∈ Ci.

Definition

A function Φ : C → R is called an exact potential function for the game Γ, if
for all i ∈ N and all c−i ∈ C−i,

ui(c, c−i)− ui(c′, c−i) = Φ(c, c−i)− Φ(c′, c−i) > 0, for all c, c′ ∈ Ci.

Definition

A game Γ is called a potential game if it admits a potential function.

Theorem: [Moderer and Shapley, 1996]

Every finite ordinal potential game has a PSNE.
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Example: Congestion Games
Definition

A congestion model M is defined as a tuple (N ,R, C,x), where
I N = {1, · · · , N} is the set of players
I R = {1, · · · ,K} is the set of resources
I C = C1 × · · · × CN , where Ci consists of sets of resources that player i

can take.
I x = {x1(`), · · · , xK(`)}, where xk(`) is the cost of each user who

uses kth resource when a total of ` users are using it.

I Congestion games arise when users share resources to complete a given task.
I Examples: Drivers share roads in a transportation network.

Definition

Based on the congestion model M , a congestion game is defined as Γ =
(N , C,U), with ui(ci, c−i) =

∑
k∈ci

xk(`k), where `k is the number of users of

resource k under strategy c = {ci, c−i}.
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Example: Congestion Games (cont...)

Theorem: [Rosenthal, 1973]

Every congestion game is a potential game.

Rosenthal’s Potential function: For every strategy profile c ∈ C, define

Φ(c) =
∑
k∈R

(
`k(c)∑
`=1

xk(`)

)
.

Theorem: [Moderer and Shapley, 1996]

Every potential game can be equivalently mapped to a congestion game.

Note: Usually, congestion games in transportation are modeled with large number of
players (N →∞). In such a case, NE in the presence of infinitesimal players is
referred to as Wardrop Equilibrium.
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Existence of Nash Equilibrium
Claim: PSNE may not always exist in a normal-form game!
Example: Matching Pennies

Definition

Given a normal (strategic) form game Γ = (N , C,U), we call
a mixed-strategy profile (π1, · · · , πN ) as a mixed-strategy
Nash equilibrium (MSNE) if ui(πi,π−i) ≥ ui(π′i,π−i), for
all π′i ∈ ∆ (Ci), for all i ∈ N .

Theorem: [Nash 1951]

There always exists a MSNE in any finite normal-form game.

How to find MSNE?
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Computing MSNE
Definition

Given a normal (strategic) form game Γ = (N , C,U) and
a mixed strategy πi at the ith player, the support of πi,
denoted as δ(πi), is the set of all pure strategies of the ith
player which have non-zero probabilities, i.e.,

δ(πi) , {c ∈ Ci | πi(c) > 0}.

Note: Although there are uncountably infinite number of mixed
strategies, there can only be finitely many supports of Nash
Equilibria (NE), which is(

2|C1| − 1
)
× · · · ×

(
2|CN | − 1

)
Idea: Consider each support at a time and search for NE.
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Computing MSNE (cont...)
Theorem

The mixed strategy profile (π1, · · · , πN ) is a NE if and only if, for all i ∈ N ,
(C1) ui(c, π−i) is the same ∀ c ∈ δ(πi), and
(C2) ui(c, π−i) ≥ ui(c′, π−i), ∀ c ∈ δ(πi), ∀ c′ /∈ δ(πi).

If NE exists in the support X1 × · · · × XN , where Xi = δ(πi), then there exists
numbers w1, · · · , wN and mixed strategies π1, · · · , πN such that

(1) wi =
∑

c−i∈C−i

(∏
j 6=i

πj(cj)

)
ui(ci, c−i), ∀ ci ∈ Xi, ∀ i ∈ N ,

(2) wi ≥
∑

c−i∈C−i

(∏
j 6=i

πj(cj)

)
ui(ci, c−i), ∀ ci ∈ Ci −Xi, ∀ i ∈ N .

(1) ⇒
N∑
i=1

|Xi| eqns, and (2) ⇒
N∑
i=1

|Ci −Xi| eqns.
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Computing MSNE...
We also need to ensure the definition of support, i.e.,

(3) πi(c) > 0, ∀ c ∈ Xi, ∀ i ∈ N ,

(4) πi(c) = 0, ∀ c ∈ Ci −Xi, ∀ i ∈ N ,

(5)
∑
c∈Ci

πi(c) = 1, ∀ i ∈ N .

(3) ⇒
N∑
i=1

|Xi| eqns, (4) ⇒
N∑
i=1

|Ci −Xi| eqns, and (5) ⇒ N eqns.

Find w1, · · · , wN and π1, · · · , πN such that Equations (1)-(5) hold true.

I #(variables) = N +
∑
i∈N

|Ci|, #(equations) = N + 2
∑
i∈N

|Ci|

I Two-Player Games ⇒ Linear Complementarity Problem (LCP)
I N -Player Games (N > 2) ⇒ Non-Linear Complementarity Problem (NLCP)

Hence, computing NE in general games is HARD!

However, NE for 2-player zero-sum games can be found efficiently!
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Algorithms to Compute MSNE

I Two-player zero-sum games ⇒ Linear Programming (LP)
I Two-player general-sum games ⇒ Lemke’s Method
I N-player general-sum games ⇒ Lemke-Howson’s Method (along many others).

This is still an active research topic!

In this course, we will only cover one algorithm for solving two-player zero-sum games.
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Games & Linear Programming

This algorithm works only for two-player zero-sum games!

Before we solve games, let us build some background
knowledge in linear programming!
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Linear Programming (LP)
Minimize a linear function in the presence of a linear constraints.

Problem: Primal (P)

minimize
x∈R

cTx

subject to 1. Ax = b,

2. x � 0.

Solution:

I No closed form solution

I Reliable/Efficient algorithms (Run time: O(n2m) if m ≥ n.)

I Software Packages: CVX
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LP and Duality
Definition

The Lagrangian function is defined as
L(x, λ, µ) = cTx+ λT (Ax− b)− µTx

= −bTλ+
(
ATλ+ c− µ

)T
x

I Weighted sum of objective function and constraints.
I λ, µ: Lagrangian multipliers

Definition

The Lagrangian dual function is defined as

g(λ, µ) = min
x∈R

L(x, λ, µ) =
{
−bTλ, if ATλ+ c− µ = 0
−∞, otherwise.
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LP and Duality (cont...)
Lower Bound Property: If λ ≥ 0, for any x ∈ R, we have

cTx ≥ L(x, λ, µ) ≥ min
x
L(x, λ, µ) = g(λ, µ)

In other words, if v∗P is the optimal value of the primal problem P ,
then, for any µ � 0 and λ � 0, we also have v∗P ≥ g(λ, µ).
In other words,

v∗P ≥ −bTλ, if ATλ+ c � 0.

Problem: Dual (D)

maximize
λ,µ

g(λ, µ)

subject to 1. µ � 0
2. λ � 0

⇒
maximize

λ
−bTλ

subject to 1. ATλ+ c � 0
2. λ � 0
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LP and Duality (cont...)
Let v∗D is the optimal value of the dual problem D.

Note that, v∗P ≥ v∗D always holds true.

Strong Duality: v∗P = v∗D.

I Holds true for linear programs as long as there exists a feasible
point x in the search space (Slater’s constraint qualifications).

Solution Methods:
I Simplex Method

I Interior-point Method

I Ellipsoid Method

I Cutting-plane Method
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Python Packages for Solving LPs

I scipy.optimize.linprog
I interior-point (default)
I revised simplex
I simplex (legacy)

I PuLP package (relies on CPLEX, COIN, gurobi solvers)
I interior-point
I revised simplex

I CVXPY (recommended, open source)
I interior-point (CVXOPT/ECOS)
I first-order optimization (SCS – parallelism with OpenMP)

Provides optimal solution to the dual problem as a certificate!
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LP & Game Theory
I Let Alice’s (row-player) utility matrix be U of size m× n.
I Therefore, Bob’s utility matrix is −U .
I Let Alice’s and Bob’s mixed strategies be a and b respectively.
I Expected utility at Alice = aTUb.

I Alice’s goal: min
b

(
max
a

aTUb

)
Note: max

a
aTUb = max

i
eTi Ub , η,

where ei is a vector of all zeros except for a one in the ith position.
Alice’s worst-case strategy can be found by solving

Problem: Alice’s Primal

minimize
η∈R,b∈Rn

η

subject to 1. η1 � Ub, for all i = 1, · · · ,
2. 1T b = 1
3. b � 0.
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LP & Game Theory (cont...)
Define x =

[
b
η

]
. Then, Alice’s primal can be equivalently written as:

Problem: Alice’s Primal 2

minimize
x∈Rn+1

eTn+1x

subject to 1.
[
−U 1
In 0

]
x � 0.

2.
[
1T 0

]
x = 1.

Lagrangian function:

L(x, λ, µ) = eTn+1x− λ
T
[
−U 1
In 0

]
x+ µ

{[
1T 0

]
x− 1

}
.

Lagrangian dual:

g(λ, µ) = min
x
L(x, λ, µ)

=

−µ, if en+1 −
[
−UT In

1T 0

]
λ+ µ

[
1
0

]
= 0

−∞, otherwise.
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LP & Game Theory (cont...)
Since eTn+1x ≥ L(x, λ, µ) ≥ g(λ, µ), we have eTn+1x

∗ ≥ g(λ, µ), ∀ λ � 0, ∀ µ � 0.

Problem: Alice’s Dual

minimize −µ

subject to 1.
[
−UT In
1T 0

]
λ = en+1 + µ

[
1
0

]
.

Equivalently, if we let b̂ = λ−n (λ without the last n entries), we have

Problem: Alice’s Dual 2

minimize −µ

subject to 1. − UT b̂ � µ1,

2. 1T b̂ = 1,

3. b̂ � 0.

Claim

Alice’s dual problem is equivalent to Bob’s primal problem.
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One final note...

How can we solve Bayesian games in normal-form?

In most game-theoretic settings, players does not have complete
knowledge about other players and their utilities.

Examples:
I Bargaining/Auctions/Contests: Valuations of other players are unknown.

I Markets: Intellectual properties are dealt as a secret, which results in uncertain
production costs about other players.

I Signaling games: The sender’s intent behind sharing a signal is usually unknown
to receivers.

and many more...
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Bayesian Games in Normal-Form
Definition

A Bayesian (or incomplete information game) game Γ is defined as a tuple
(N ,Θ,p, C,U), where
I N = {1, · · · , N} is the set of N players (agents),

I Θ = {Θ1, · · · ,ΘN}, where Θi is the set of types of player i,

I p = {p1, · · · , pN}, where pi : Θi → ∆(Θ−i) is the conditional belief
over the set of types of other players, given the type of player i,

I C = C1 × · · · × CN is the strategy profile space, where Ci represents
the set of strategic choices (actions) available at the ith player,

I U = {u1, · · · , uN} is the set of utility functions, where ui : Ci → R
represents the utility function at the ith player.

Note: The label ”Bayesian games” is coined because pi(θ−i|θi) can be computed
from prior probability distribution p(θi, θ−i) using Bayes Rule, as shown below:

pi(θ−i|θi) =
p(θ−i, θi)∫
p(θ−i, θi)dθ−i
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Bayesian Nash Equilibrium (BNE)
Consider a game with finite types of agents:
I Let σi(θi) denote the mixed strategy employed by Player i of type θi ∈ Θi.
I Expected utility of the ith player of type θi is given by

Ui(σi, σ−i, θi) =
∑

θ−i∈Θ−i

pi(θ−i|θi)∑
c∈C

 ∏
j∈N−i

σj(cj |θj)

σi(ci)ui(ci, c−i(θ−i), θ)

 ,
Definition

A Bayesian-Nash equilibrium is a strategy profile σ = {σ1, · · · , σN} ∈ ∆(C),
if for all i ∈ N and for all θi ∈ Θi, we have

σi(θi) ∈ σi∈∆(Ci)Ui(σi, σ−i, θi)

Theorem

There always exists a mixed-strategy BNE in any finite Bayesian game.
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BNE in Second-Price Auctions
I Two players N = {1, 2}.

I Players valuate the auctioned item as v1 and v2 respectively.

I However, the other players does not complete knowledge about valuations!
Only know p(v−i|vi) = U [0, 1], a uniform distribution in the range [0, 1].

I Utility of player i is

ui(bi, b−i, vi) =


vi − b−i, if bi > b−i

vi − b−i
2

, if bi = b−i

0, otherwise.

As opposed to the complete information game,

Theorem

There exists a unique Bayesian equilibrium in second-price auctions, which is
the case when bidders choose bids equal to their valuations, i.e. b∗i = vi.
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Summary

I Representation: How to represent games mathematically?

I Information Asymmetry: What causes information sets to
exist in games?

I Transformation: How to represent extensive-form games in
normal-form?

I Solution Concepts: What do we mean by solving a game?

I Computing Equilibria: How can we find solutions to a game?

I Solving Bayesian Games: How to account for uncertainty in
solution concepts?
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