Topic 2: Basic Models
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Outcomes & Objectives

» Be proficient in modeling games mathematically

S

>

Apply decision-theoretic concepts (e.g. lotteries, utilities) to model agent
decisions and outcomes in a game.

Use mathematical structures (e.g. matrices, graphs) to represent the
state of the game.

Transform from one representation to another (e.g. extensive-form to
normal-form and vice versa).

Identify some useful properties in games (e.g. zero-sum games, games
with information asymmetry, Bayesian games).

» Be proficient with basic solution approaches.

vvyYy

Iterative Elimination of Dominated Strategies
Minimax Equilibrium

Nash Equilibrium

Bayesian Nash Equilibrium

» Apply game theory in various applications.

>
>
>

Congestion games in transportation
MAC-layer games in computer/wireless networks
Game-theoretic security
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Games: Types and Representations

Definition

Game is a strategic framework where multiple intelligent
agents interact with one another through their rational
decisions.

Types of games:
» Non-cooperation vs. Cooperation
» Static vs. Dynamic
» Perfect-information vs. imperfect-information

» Complete-information vs. incomplete-information
Two basic representations:
» Normal/Strategic Form: Matrix Representation

» Extensive Form: Graph (Decision-Tree) Representation
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Normal-Form Representation

A normal-form (or a strategic-form) game T is de-
fined as a triplet (\V,C,U), where

> N ={1,---, N} is the set of N players (agents),

» C =C; X --- X Cy is the strategy profile space,
where C; represents the set of strategic choices
(actions) available at the i'" player,

» U = {uy,--- ,un} is the set of utility functions,
where wu; : C; — R represents the utility function at
the " player.
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Example: Matching Pennies
Two players toss their respective coins and compare their outcomes.
» N ={1,2} (Two-player game),
» C={H,T} x{H,T},

» U = {uy,uz}, where u; : C; — {—1,1} such that u; +ug = 0.

Player 2

Tails

mu -1‘ 1
-1' 1 1’ -1
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Matching Pennies: Applications
» Sports: Soccer penalty kicks, Tennis serve-and-return plays

» Security: Attack-defense games in computer security, cops
vs. adversaries in airports

Allied landing in Europe on June 6, 1944: Normandy vs. Calais
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Example: Prisoner’s Dilemma

Two prisoners involved in the same crime are being interrogated
simultaneously in separate rooms. They can either cooperate or
defect with the interrogators.

> N ={P, P}
» C={C,D} x {C,D}

» U = {uj,uz}, where u; : C; — R, as shown in the matrix
below. _
Prisoner 2

m
n 0’ :

Prisoner 1

mn 1’ 1
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Prisoner’s Dilemma: Applications

» Networking: CSMA with Collision Avoidance (a.k.a. TCP
User's Game)

» Climate Change Politics: No country is motivated to curb
CO4 emissions for selfish reasons, although every country
benefits from a stable climate.

» Advertising: Two competiting firms can either advertise, or
not advertise about their products at a given time.

» Peer-to-Peer File Sharing: BitTorrent's unchoking
strategies in search of cooperative peers to optimize downlink
data-rates resemble those in this game.

Captures lack of trust between players!
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Example: Tragedy of the Commons

> N={F1, - ,Fn}
» Farmer i (F;): Keep the sheep or not (s; € {0,1})
» Payoff for keeping the sheep = 1 unit
» Village has limited stretch of grassland
» Damage to environment = 5 units (shared equally by all farmers)
Net utility at F;: wi(S1,-+ ,8n) =8 — b [u}
n
If n=2:
Farmer 2
]
E
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Tragedy of the Commons: Applications

Application: Spectrum Commons
» 3650 MHz (50 MHz block): Licensed Commons

» Wifi (2.4 GHz, 5 GHz): Unlicensed Commons

UNITED

STATES
FREQUENCY

ALLOCATIONS
THE RADIO SPECTRUM 8

Pum—
A multi-player generalization of Prisoner's Dilemmal
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Extensive-form representation captures
more information!

P state evolution in a game and the corresponding choice sets
» order of moves
» information available throughout the game

Play-Order in Matching Pennies:
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Observability: Perfect vs. Imperfect
Information

Definition

A game where every agent can observe every other player’s
actions is called a perfect information game.

Example: Chess

Imperfect Information: Player’s actions are not observable!
Example: Poker

Games which are sequential, and which have chance events, but no
secret information, are considered games of perfect information.

Example: Monopoly (uncertainty due to rolling dice.)
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More on Imperfect Information Games...

Games with simultaneous moves are generally considered imperfect
information games!

Matching Pennies with Simultaneous Moves:

= )
H T H T
[0 9} 2, &
H N H T H u H T
52 - - - -
R 1,1 1,-1 1,11 1,1 1,1 1,-1

Group all indistinguishable states into sets to disclose available

information at each agent!
13
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Nature’s Role in Games

» Players play the left game with probability p,
» Players play the right game with probability 1 — p,

Player 2 Player 2

Player 1

Left Game (p) Right Game (1 - p)

e o
e ) o 2|
T EEEE
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Agent Types: Complete vs. Incomplete
Information

Sometimes, players may not know each others’ types.
Such games are called incomplete-information (or Bayesian) games.
A Bayesian (or incomplete information game) game T is defined as a tuple
(N,0,p,C,U), where
» N ={1,---,N}is the set of N players (agents),

> ©={0O1, - -,0n}, where O, is the set of types of player 1,

» p={p1,- - ,pNn}, where p; : ©; — A(O_;) is the conditional belief
over the set of types of other players, given the type of player i,

» C =Cy X--- X Cyp is the strategy profile space, where C; represents
the set of strategic choices (actions) available at the i*" player,

» U = {u1, - ,un} is the set of utility functions, where u; : C; = R
represents the utility function at the i** player.

Example: Competition in Job Markets
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Information Sets

» Imperfect observations, nature’'s randomness and
incomplete information about the players’ types

= State uncertainty.

» State uncertainty = Limited information at the agent.

Definition

An information set I, of the i'" player P; is the set of
that decision nodes at P; that are indistinguishable to P;

itself.
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Extensive-Form Games: Formal Definition

An extensive-form game T is defined as a tuple I' = (NV,C,G,w, P,Z,U),
where

» N ={1,---,N}is the set of N players (agents),

» C=C1 X -+ X Cp is the strategy profile space,

» G is a decision tree rooted at node 0 (chance node) with vertices
representing the game’s states and edges representing different player
decisions,

» 7 represents the chance probabilities at all the alternatives available at
the chance node,

» P:G— /\/jepresents the player function that associates each proper
subhistory G € G to a certain player,

» T ={Zi,---,Zn} represents the set of information sets at all the
players,
» U = {u1, - ,un} is the set of utility functions.
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Equivalence of Representations

Can we eliminate temporal dynamics in extensive-form
games to gain substantial conceptual simplification, if
questions of timing are inessential to our analysis?

Note: This is not straightforward, i.e.,
r.=(W,C,G,7,P, Z,U) = T'=(N,C,U)

due to the presence of information sets Z, play-order, and nature's
randomness in 7.
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Equivalence of Representations (cont...)

Example: Consider the following two Matching Pennies games with
non-identical information sets...

Player 2

m-

-
u
1,-1 -1,1 ‘1,1 1,-1 P P R p————.

Player 2
H T
o »
n

Player 1

—
H T H T E
>
©
)
1,-1 11 1,1 1,-1
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Equivalence of Representations (cont...)

Exercise: Transform the following extensive-form game into a
normal-form representation:

Player 1
0.5
@ -

Player 2

Nature

Outcome

0,8

8,0

8,0

0,8
8,0

6,0

6,0
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Transformation in Large Games is Difficult!

Example: Tic-Tac-Toe Extensive-form representation?:
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X0

N ={1,2}

Environment: 3 x 3 grid

Player 1: Place a cross (x) in a blank space
Player 2: Place a nought (o) in a blank
space

Possible outcomes: Win, Loose, Draw

-

vvyyvyy

v

The first player to have three symbols in
straight line wins. The other player looses.

v

Natural to represent in extensive-form...

How about normal-form representation?

a
Source: K. Binmore, “Playing for Real: A Text on Game Theory,”
Oxford University Press, 2007.
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Solution Concepts for Normal-Form Games

Assume that we can always transform an extensive-form game
into a normal-form equivalent.

Specifically, we will focus on the following solution concepts:
» lterative Elimination of Dominated Strategies

» Minimax Equilibrium

» Nash Equilibrium
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Iterative Elimination of Dominated
Strategies

Can we use the notion of dominance to solve games?

Idea: Eliminate one or more dominated strategies at each player in
an iterative manner...

Consider the following game:

Player 2

Player 1
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Iterative Elimination of Dominated
Strategies (cont...)

Step 1: a3 77 asa = Eliminate a4 Step 4: by 7 b1 = Eliminate b;

Step 2: b3 7 ba = Eliminate by Step 5: a2 7 a; = Eliminate a1

Step 3: a2 7 ag = Eliminate a3 Step 6: by ZZ bg = Eliminate b3
Player 2

Player 1
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Pure/Mixed Strategies

Definition

Given a choice (strategy) set C; at player i, then every ¢ € C;
is called a pure strategy.

Definition

Given a player ¢ with a set of pure strategies C;, a mixed
strategy o; is a lottery over C;.
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Zero-Sum Games

Definition

A zero-sum game is the one in which the sum of individual
players’ utilities for each outcome sum to zero.

Example: Matching Pennies.

In two-player zero-sum games, if Alice (Player 1) wins, Bob (Player 2) looses, and vice
versa. Therefore, w.l.o.g, we represent the utility matrix using Alice’s utilities.

Player 2 Player 2

QTR Oy Re———
)
P R ———
[
:
o
a.
e pye————
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Minimax Equilibrium

Worst-Case Analysis:
» Alice minimizes her maximum utility (min-max strategy)

» Bob maximizes his minimum utility (max-min strategy)

> < wu(a,b) < min (max u(a, b)>
beCp \a€Cy

max | min u(a,b)
acCy \ beCp

Minimax equilibrium is a saddle point in utilities!

Example:
Bob

pop OO
| - el
‘HIE _—

Minimax Equilibrium: (ay, by)

27
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Minimax Equilibrium (cont...)

Example 2:
Player 2

Minimum utility

Player 1

M

Minimax equilibrium may not exist in pure strategies!
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Minimax Equilibrium (cont...)

Minimax equilibrium exists in mixed strategies within finite games!
» Alice minimizes her maximum expected utility (min-max strategy).
» Bob maximizes his minimum expected utility (max-min strategy).

min  u(pa;pp) | < u(pa,pp) <  min max  u(pa,Ps)
PLEA(CH) PLEA(CE) \Pa€A(Ca)

max
Pa€A(CA)
Gradiant:

Example: Matching Pennies Su
Bob o Opa 0 1
u = = = = —
ou Pa = Pb 2

Opy

T(1—pp)

. Hessian matrix: |V2u| < 0 = Saddle
i Point!
0%u 8%u

@
2
E —
S - 2y — op;  Opedpa | _ [ 0 4
2 2 4 0
EU: u(pa,,pb) =1- 2pa, - 2171; + 4papb ﬂ 8_';
OpaOpy Op})
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Best Response of a Player

Given a strategic form game I' = (N, C,U) and a strategy
profile c_; € C_;, we say ¢; € C; is a best response of player
1 with respect to c_; if

ui(cs, e—g) > (e, e—y), for all ¢; € C;.

Example: Consider the Matching Pennies game.
Player 2
» BR{(P,~ H)=H

Tails

(
> BRl(P2 ~ T) =T
> BP0 =1 -

(

Player 1

__
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Nash Equilibrium: A Solution Concept

No player should have the motivation to unilaterally deviate
from their respective strategies!

In other words, every player picks a best response to all the other players’ strategies.

Definition

Given a normal (strategic) form game I' = (N,C,U), we

call a strategy profile (c1,---,cn) a pure-strategy Nash
equilibrium (PSNE) if u;(c;, c—;) > (¢}, c_;), for all ¢, €
C;, foralli e N.
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Computing PSNE: Battle of the Sexes

Description:
» Two-player coordination game.

» Husband (H): Prefers football game Wife
over movie

> Wife (W): Prefers movie over
football game

Football

Football P “

Best-Response and Equilibrium Analysis:
» BRy(W~F)=F
» BRy(W ~M)=M
» BRyw(H~F)=F
» BRw(H~M)=M
» PSNE: (F,F),(M,M)

Husband

Application: Distributed Resource Allocation Games (e.g. 5G Networks)

» Tasks can be performed only when various resources (e.g. computational power,
wireless spectrum) are available simultaneously.

Motivates players to form groups (or coalitions)!
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Computing PSNE: Cournot’s Duopoly

» Two firms produce identical item of quantities q1 and g2, while incurring 4c
units of cost/quantity.

» Market clearing price: p(q) = 100 — 2q, where ¢ = q1 + ¢2.
Utility of the Firm-i: w;(q1,492) = ¢i - p(q1 + q2) —4c- q;

If Firm-{—i} produces ¢_;, then Firm-i finds its best response as follows:

0ui(qi, q—i)

=100 — 2(g; + q—s) — 2¢; — 4c = 0.
9g;

At NE, since both firms play best responses with each other, we have...

q2
System of two best-response equations:

> BRl(qz) = 2q1 + g2 = 50 — 2¢
» BR2(q1) = ¢1 +2g2 =50 — 2¢ 502 0w @192 _ o

9q,

Solving them, we obtain

.. 50—2c \
q1 =42 =

3 25-c¢ 50 - 2¢
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Computing PSNE: Potential Games

Definition

A function ® : C — R is called an ordinal potential function for the game T',
if for all i € N and all c_; € C_;,

ui(c,c—i) —ui(c',e—i) > 0, iff ®(c,c—;) — ®(c’,c—;) >0, for all ¢,¢’ € C;.

Definition

A function ® : C — R is called an exact potential function for the game T, if
forallie N andallc_; € C_;,

wi(c,c—i) —ui(c,e_;) = ®(c,c—;) — ®(c’,c_;) > 0, forall ¢,c’ €C;.

Definition

A game I is called a potential game if it admits a potential function.

Theorem: [Moderer and Shapley, 1996]

Every finite ordinal potential game has a PSNE.
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Example: Congestion Games

A congestion model M is defined as a tuple (M, R,C, x), where
» N ={1,---,N} is the set of players

» R ={1,---,K} is the set of resources

» C=C; X---xCp, where C; consists of sets of resources that player 7
can take.

> z={z1({), - ,zx(£)}, where z} () is the cost of each user who
uses k" resource when a total of £ users are using it.

» Congestion games arise when users share resources to complete a given task.

» Examples: Drivers share roads in a transportation network.
Definition

Based on the congestion model M, a congestion game is defined as I' =

(N, C,U), with u;(ci,c—i) = Z 2k (Lx), where £y, is the number of users of
kec;
resource k under strategy ¢ = {c¢;,c—;}.

Sid Nadendla (CS 5408: Game Theory for Computing)
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Example: Congestion Games (cont...)

Theorem: [Rosenthal, 1973]

Every congestion game is a potential game.

Rosenthal’s Potential function: For every strategy profile ¢ € C, define

Ly (c)
@ =Y | Y =®
kER £=1

Theorem: [Moderer and Shapley, 1996]

Every potential game can be equivalently mapped to a congestion game.

Note: Usually, congestion games in transportation are modeled with large number of
players (N — o0). In such a case, NE in the presence of infinitesimal players is
referred to as Wardrop Equilibrium.
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Existence of Nash Equilibrium

Claim: PSNE may not always exist in a normal-form game!

Example: Matching Pennies

Definition

Given a normal (strategic) form game I' = (N, C,U), we call
a mixed-strategy profile (71, -+ ,7n) as a mixed-strategy
Nash equilibrium (MSNE) if u;(m;, 7_;) > u;(w},7_;), for
all 7} € A (C;), for all i € N.

Theorem: [Nash 1951]

There always exists a MSNE in any finite normal-form game.

How to find MSNE?
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Computing MSNE

Given a normal (strategic) form game I' = (N,C,U) and
a mixed strategy m; at the i'" player, the support of 7,
denoted as 6(r;), is the set of all pure strategies of the "

player which have non-zero probabilities, i.e.,

(5(7TZ) = {C & Cz ’ 71'1'(0) > 0}.

Note: Although there are uncountably infinite number of mixed
strategies, there can only be finitely many supports of Nash
Equilibria (NE), which is

(2|01| _ 1) X e X (Q\CNl _ 1)
Idea: Consider each support at a time and search for NE.

Sid Nadendla (CS 5408: Game Theory for Computing)
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Computing MSNE (cont...)

The mixed strategy profile (71, ,mx) is a NE if and only if, for all i € N/,

(C1) wi(c,m—;) is the same V ¢ € §(m;), and
(C2) wi(e,m—i) > ui(c/,m—i), Vc€d(mi), V¢ d(m).

If NE exists in the support X1 X -+ X Xy, where X; = §(7;), then there exists
numbers w1, -+ ,wy and mixed strategies 71, -,y such that

(1) w; = Z HTI'] ¢i) | uilei,e—s), Ve € X, VieN,

c_;€C_; \j#i

2) w; > Z HTI’] ¢j) | uilei,e—s), Ve €C — X, VieN.
c_;€C_; \j#i

éZ\X\ eqns, and ( éZ\C — Xj| eqns.
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Computing MSNE...

We also need to ensure the definition of support, i.e.,
3) mi(c)>0,Vece X, VieN,

(4) mi(c)=0,Vecel—X;, VieN,

(5) Zm(e)zl7 VieN.

ceCy

N N
(3) = Z | X;| eqns, (4) = Z |C; — X;| eqns, and (5) = N eqns.

i=1 i=1

Find wi, -+ ,wn and 7y, -+, 7N such that Equations (1)-(5) hold true.
» #(variables) = N + Z [Cil.  #(equations) = N + 2 Z [
iEN ieN

» Two-Player Games = Linear Complementarity Problem (LCP)
» N-Player Games (N > 2) = Non-Linear Complementarity Problem (NLCP)

Hence, computing NE in general games is HARD!
However, NE for 2-player zero-sum games can be found efficiently!
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Algorithms to Compute MSNE

» Two-player zero-sum games = Linear Programming (LP)
» Two-player general-sum games = Lemke’s Method

» N-player general-sum games = Lemke-Howson's Method (along many others).

This is still an active research topic!

In this course, we will only cover one algorithm for solving two-player zero-sum games.
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Games & Linear Programming

This algorithm works only for two-player zero-sum games!

Before we solve games, let us build some background
knowledge in linear programming!

Sid Nadendla (CS 5408: Game Theory for Computing)
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Linear Programming (LP)

Minimize a linear function in the presence of a linear constraints.

Problem: Primal (P)

minimize Lz
z€R

subject to 1. Ax = b,

2. x> 0.

Solution:
» No closed form solution
» Reliable/Efficient algorithms (Run time: O(n?m) if m > n.)

» Software Packages: CVX
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LP and Duality

The Lagrangian function is defined as

Lz, \p) = o+ 2T (Az—b) —plx

= —pIx+ (ATA+C—M)TZC

» Weighted sum of objective function and constraints.

» )\, u: Lagrangian multipliers

Definition

The Lagrangian dual function is defined as
TN, fATA+c—p=0

A, p) =min L(z, A\, p) =
9 p) zeR ( 2 {—oo, otherwise.
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LP and Duality (cont...)

Lower Bound Property: If A > 0, for any z € R, we have

c'e > L(x, A, p) = min Lz, A, 1) = g(A, )
In other words, if v} is the optimal value of the primal problem P,
then, for any = 0 and X\ > 0, we also have v} > g(\, p).

In other words,

vp > —bT\, if ATX+¢ = 0.

Problem: Dual (D)

. T
maximize  g(\, ) maXI}\mlze —b' )\
A = . .,
subjectto 1. u =0 subjectto 1. ATXA+¢>=0
2.0>0 2.0=0
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LP and Duality (cont...)

Let v}, is the optimal value of the dual problem D.

Note that, v > v}, always holds true.

Strong Duality: vy = v},

» Holds true for linear programs as long as there exists a feasible
point x in the search space (Slater’s constraint qualifications).

Solution Methods:
» Simplex Method
» Interior-point Method
» Ellipsoid Method

» Cutting-plane Method
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Python Packages for Solving LPs

» scipy.optimize.linprog

» interior-point (default)
» revised simplex
» simplex (legacy)

» PuLP package (relies on CPLEX, COIN, gurobi solvers)

P interior-point
» revised simplex

» CVXPY (recommended, open source)

» interior-point (CVXOPT /ECOS)
» first-order optimization (SCS — parallelism with OpenMP)

Provides optimal solution to the dual problem as a certificate!
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LP & Game Theory

Let Alice's (row-player) utility matrix be U of size m X n.
Therefore, Bob's utility matrix is —U.

Let Alice's and Bob’s mixed strategies be a and b respectively.
Expected utility at Alice = a7 Ub.

vvyyypwy

v

Alice's goal: mbin (max aTUb)

a

Note: maxal Ub = max e?Ub £ 7,
a 1

th

where e; is a vector of all zeros except for a one in the i*" position.

Alice's worst-case strategy can be found by solving

Problem: Alice’s Primal

minimize 7
nER,bER™

subjectto 1. n1 > Ub, foralli=1,---,
2.1Th=1
3. b=0.
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LP & Game Theory (cont...)

Define z = [ 71; } Then, Alice's primal can be equivalently written as:

Problem: Alice’s Primal 2

minimize eg+1x
zERn+1

subject to 1. [

Lagrangian function:
_.T | -U 1 T
Lz, A\, p) = e 12— A { I, O}eru{[l O]xfl}.
Lagrangian dual:
g(A ) = minL(z, A p)
x

—H, if €n+1 —

—oo, otherwise.
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LP & Game Theory (cont...)

Since 6;€+1w > Lz, A\, p) > g\ p), we have cZL‘Jrlz‘* >g(\p), YVA=0,Vuro.

Problem: Alice’s Dual

minimize — L

-uT 1,

. ) 1
subject to 1. [ s 0 })\:en+1+u{ 0 }

Equivalently, if we let b= A—n (X without the last n entries), we have

Problem: Alice’s Dual 2

minimize —

subject to 1. —UTh = pul,
2. 1Th =1,
3. b>0.

Claim

Alice’s dual problem is equivalent to Bob's primal problem.

Sid Nadendla (CS 5408: Game Theory for Computing) 50



One final note...

How can we solve Bayesian games in normal-form?

In most game-theoretic settings, players does not have complete
knowledge about other players and their utilities.
Examples:
» Bargaining/Auctions/Contests: Valuations of other players are unknown.

»  Markets: Intellectual properties are dealt as a secret, which results in uncertain
production costs about other players.

» Signaling games: The sender’s intent behind sharing a signal is usually unknown
to receivers.

and many more...
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Bayesian Games in Normal-Form

A Bayesian (or incomplete information game) game T is defined as a tuple
(N,0,p,C,U), where

» N ={1,---,N} is the set of N players (agents),
» O ={0O1,---,0On}, where O; is the set of types of player ¢,
» p={pi1, - ,pn} where p;, : ©, = A(O_,;) is the conditional belief

over the set of types of other players, given the type of player 1,

» C=Cy X -+ X Cp is the strategy profile space, where C; represents
the set of strategic choices (actions) available at the i*" player,

» U ={u1, - ,un} is the set of utility functions, where u; : C; = R
represents the utility function at the " player.

Note: The label "Bayesian games” is coined because p;(6_;|0;) can be computed
from prior probability distribution p(6;,0_;) using Bayes Rule, as shown below:

p(0—:,0;)

/p(e—iﬁi)d‘)—i
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Bayesian Nash Equilibrium (BNE)

Consider a game with finite types of agents:
> Let 0;(0;) denote the mixed strategy employed by Player ¢ of type 6; € O;.
» Expected utility of the it" player of type 6; is given by

Uiloio—i,0) = Y |p(0-ilo) Y | [ esteslon) | oileuitere—i0-0),0) | |

0_;€0_; ceC JEN_;

Definition

A Bayesian-Nash equilibrium is a strategy profile o = {o1,--- ,on} € A(C),
if for all i € N and for all 8; € ©;, we have

0i(0;) € o,en(cy)Uiloi,0-i,0)

Theorem

There always exists a mixed-strategy BNE in any finite Bayesian game.
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BNE in Second-Price Auctions

» Two players N' = {1,2}.
» Players valuate the auctioned item as v1 and v2 respectively.

» However, the other players does not complete knowledge about valuations!
Only know p(v_;|v;) = U[0, 1], a uniform distribution in the range [0, 1].

» Utility of player ¢ is
v; —b_jg, if b; >b_;
I A
wi(bi, b, v;) = — if b; = b_;

0, otherwise.

As opposed to the complete information game,

There exists a unique Bayesian equilibrium in second-price auctions, which is
the case when bidders choose bids equal to their valuations, i.e. bz’f = ;.
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Summary

» Representation: How to represent games mathematically?

» Information Asymmetry: What causes information sets to
exist in games?

» Transformation: How to represent extensive-form games in
normal-form?

» Solution Concepts: What do we mean by solving a game?
» Computing Equilibria: How can we find solutions to a game?

» Solving Bayesian Games: How to account for uncertainty in
solution concepts?
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