
Topic 1: Decision Theory
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Outcomes & Objectives
I Master the ability to study/model and analyze agent choices

(lotteries) using expected utility theory.
I Demonstrate why people do not maximize expected rewards.
I Characterize agent’s choice preferences using utilities, and

outcome beliefs using subjective probabilities.
I Develop an intuitive axiomatic framework in which agent

picks choices to maximize his/her expected utility.

I Illustrate the limitations of EUT and formulate models to
better accomodate various deviating behaviors.
I Relate axiom violations to other well-known normative models.
I Identify certain deviations from experiments and associate

them with descriptive models.

I Devise and become proficient in a decision model based on
domination, when agents cannot evaluate beliefs.
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Philosophy of Decision Theory

I Agent: One decision maker (or a team of multiple
decision makers working in tandem) in a given system.

I Agent Rationality: The philosophy (principle) used by
agents to make decisions.

How does an agent make decisions under uncertainty?
Can we model agent rationality mathematically?

Two fundamental approaches:
I Normative Models: Identification of optimal decision

outcomes – Prescriptive in nature
I Descriptive Models: Describe observed behaviors using

consistent rules/models.
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Modeling Choice Uncertainty
I X : (Discrete) Set of all possible prizes
I ∆(X ): Set of all possible randomizations over choices,

called a probability simplex

However, these choice probabilities are conditional to the
information available at the agent.
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Modeling Choice Uncertainty (cont...)
I Say, you have two route choices: A and B.
I Normally, decide A or B based on preference evaluation.

What if there was an unexpected accident in route A?
I Outcomes rely on the state of the choice experiment.
I Ω: Set of all possible states.

Definition

A lottery is any probability distribution f : Ω → ∆(X )
that specifies a non-negative number f(x|t) for every
prize x ∈ X and every state t ∈ Ω such that

∑
x∈X

f(x|t) =

1 holds true for every state t ∈ Ω.

I L: Set of all such lotteries in the choice experiment.
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Randomization of Lotteries
Given two lotteries f, g ∈ L, and a number α ∈ [0, 1], the lottery
αf + (1− α)g denotes a lottery in L such that

(αf + (1− α)g)(x|t) = αf(x|t) + (1− α)g(x|t)

for all x ∈ X and t ∈ Ω.

Example: α is the probability with which an accident can take
place in route A.
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Preference Relations
Consider any two lotteries f, g ∈ L (finite, countably infinite, or
uncountable) be given. Assume that an event E ∈ E has been
observed that reveals state information.

I Binary Relation: f �E g.
Example: f is greater than g, f is more tasty than g

I Negation: ¬(f �E g).
Example: f is not greater than g, f is not as tasty as g

I Indifference: f ∼E g.
Example: f is equal to g, f is similar (incomparable) in taste
to g

I Weak Relation: f %E g.
Example: f is greater than or equal to g, f is at least as tasty
as g
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St. Petersburg Paradox
(Invoked in Blaise Pascal’s Wager, published in Pensèes in 1670)

Consider the following choice experiment...

Final outcome: Accumulate all the rewards obtained over all time
instances of the experiment.

Can you formally state this experiment as a set of lotteries?

If you were to choose the length of play beforehand, how
long would you play this game?
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St. Petersburg Paradox (cont...)
(Invoked in Blaise Pascal’s Wager, published in Pensèes in 1670)

Expected reward = 2× 1
2 + 4× 1

4 + · · ·

= 1 + 1 + · · · =∞.

Prescription: Play over an infinite time-horizon!

But, any sane person chooses a finite time-horizon!
In other words, we do not maximize expected rewards!
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St. Petersburg Paradox (cont...)
(Daniel Bernoulli in Commentaries of the Imperial Academy of Science of Saint
Petersburg in 1738)

Decreasing Marginal Utilities:
Expected utility = ln 2× 1

2 + ln 4× 1
4 + · · ·

=
[1

2 + 2
4 + 3

8 + · · ·+ k

2k
+ · · ·

]
ln 2

< ∞.

However, logarithmic distortion of rewards does not characterize
diverse choice preferences across different agents.
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Ordinal Utility
Definition

Ordinal utility is any deterministic function u : X × Ω → R
such that, for any E ⊆ Ω,
x1 %E x2 ⇐⇒ u(x1, t) ≥ u(x2, t) for all x1, x2 ∈ X , t ∈ E.

Example: Consider an agent who is presented with four choice
outcomes, X = {a, b, c, d} and Ω contains only one state. Let the
agent’s preference ordering be a � b � c � d.

Then, how can we assign real numbers to outcomes so as to reflect
the above preference ordering?

Assignments: Uncountably infinite possibilities...

I a : 4, b : 3, c : 2, d : 1, a : 100, b : 50, c : 10, d : 0

Such assignments do not capture the degree of agent’s preferences.
Does such utility functions exist in all choice experiments?
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Expected Utility

Definition

Given any conditional distribution p, utility function u, lottery
f ∈ L and any event E ∈ E , the expected utility of the prize
determined by f is given by

Ep(u(f)|E) =
∑
t∈E

p(t|E)
∑
x∈X

u(x, t)f(x|t).
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Expected Utility: Example
Suppose a commuter has two route choices A and B. Route A is a local road with
utility uA = 0.3. Route B is a highway route, which has a utility

uB =
{

1, if Route A is normal
0.5, if Route A is under construction

if there is no accident, and

uB =
{

0.25, if Route A is normal
0.1, if Route A is under construction

if there is an accident. Let Route B be under construction with probability 0.4. If the
commuter takes Route B with probability 0.75, then the expected utilities are given by

EUNoAccident = 0.6× (1× 0.75 + 0.3× 0.25) + 0.4× (0.5× 0.75 + 0.3× 0.25)
= 0.675

EUAccident = 0.6× (0.25× 0.75 + 0.3× 0.25) + 0.4× (0.1× 0.75 + 0.3× 0.25)
= 0.2175
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Axioms of Decision Theory
Basic properties that a rational agent’s preferences may satisfy:

1. Completeness: Either f �E g, or g �E f . or f ∼E g

2. Transitivity: If f %E g and g %E h, then f %E h.

3. Relevance: If f(·|t) = g(·|t) for all t ∈ E, then f ∼E g.

4. Monotonicity: If f %E g and 0 ≤ β ≤ α ≤ 1, then

αf + (1− α)g %E βf + (1− β)g.

5. Continuity: If f %E g and g %E h, then there exists
αg ∈ [0, 1] such that

g ∼E αgf + (1− αg)h.
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Axioms of Decision Theory (cont...)

6. Objective Substitution: If f1 %E g1 and f2 %E g2 and
α ∈ [0, 1], then

αf1 + (1− α)f2 %E αg1 + (1− α)g2.

7. Subjective Substitution: If f %E1 g and f %E2 g and
E1 ∩ E2 = ∅, then f %E1∪E2 g.

8. Interest: For every t ∈ Ω, there exists at least one pair of
prizes x1, x2 ∈ X such that x1 �{t} x2.

9. State Neutrality: For any two states s, t ∈ Ω, if
f(·|s) = f(·|t), g(·|s) = g(·|t) and f %{s} g, then f %{t} g.
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Expected Utility Maximization (EUM)
Credit: Von Neumann and Morgenstern, 1947

Theorem 1

Axioms 1-8 are jointly satisfied if and only if there exists a
utility function u : X × Ω → [0, 1] and a conditional proba-
bility function p : E → ∆(Ω) such that

I f %E g if and only if Ep(u(f)|E) ≥ Ep(u(g)|E) for all
f, g ∈ L and for all E ∈ E .

I If there are more than two lotteries, by transitivity, the most
preferred lottery also has the largest expected utility!
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State-Independent Utility Maximization
Credit: Von Neumann and Morgenstern, 1947

State-Independent Utility: u(x, t) = U(x), for all t, x.
(inspired from State Neutrality axiom)

Corollary 1

Axioms 1-9 are satisfied if and only if there exists a state-
independent utility function u : X × Ω → [0, 1] and a
conditional probability function p : E → ∆(Ω) such that
I f %E g if and only if Ep(u(f)|E) ≥ Ep(u(g)|E) for

all f, g ∈ L and for all E ∈ E .

Given that utility functions exist under Axioms 1-9, how
can we construct1 them from agents’ revelations?

1This is beyond the scope of this course. However, interested students
may refer to Revealed Preference Theory and Afriat’s Theorem.
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Example
Suppose an agent wants to buy a used 4-volume boxed set of The
Art of Computer Programming by Don Knuth. Assume that the
item arrives in any of the following conditions: Very Good, Good
and Acceptable. Following are the two marketplaces available to
the agent:

I Market 1: Good with probability 0.3, or Very Good with
probability 0.7.

I Market 2: Acceptable with probability 0.3, or Good with
probability 0.2, or Very Good with probability 0.5.

Let the utilities be uA = 100, uG = 200 and uV G = 300. Then,

EU(Market 1) = 0.3× 200 + 0.7× 300 = 270
EU(Market 2) = 0.3× 100 + 0.2× 200 + 0.5× 300 = 220

Prescription: Market 1 � Market 2
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Affine Transformation
Credit: Von Neumann and Morgenstern, 1947

Theorem 2

Let E ∈ E be any given subjective event. Suppose
the agent’s preferences satisfy Axioms 1-9, and let u :
X × Ω → [0, 1] and p : E → ∆(Ω) denote the state-
independent utility function and conditional probability
function as stated in Corollary 1. Let v be a state-
independent utility function and q be a conditional prob-
ability function, which represent the preference ordering
%E. Then, there exists numbers a > 0 and b such that

v(x) = au(x) + b, for all x ∈ X .
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Types of Utility Functions
I Risk Aversion: A concave function of monetary value

(wealth), i.e.,
u(λx+ (1− λ)y) > λu(x) + (1− λ)u(y) ∀ x, y ∈ X

I Risk Seeking: A convex function of monetary value (wealth),
i.e., u(λx+ (1− λ)y) < λu(x) + (1− λ)u(y)

I Risk Neutral: An affine function of monetary value (wealth).
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Limitations of EUM: Preference Intensity
I x1 � x2 � x3 � x4 and

u(x1)−u(x2) > u(x3)−u(x4)
6=⇒ change from x2 to x1

is more preferred than change
from x4 to x3.

I Ordinal utility does not
measure both intensity and
direction of preferences.

I Need for cardinal utility to
capture the strength of
preferences.

I Note: The notion of
cardinal utility has a
different meaning in
measurement theory in
psychology, which is
irrelevant to our discussion.

I Captures information
framing effects
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Limitations of EUM: Other Inconsistencies

People’s preferences does not necessarily satisfy Axioms 1-9.

I Bounded Rationality: Decisions under Limited
Time/Memory/Attention ⇒ Satisficing.

I Behavioral Complexities: Loss Aversion, Probability
Weighting, Framing Effects and Preference Reversals,
Anchoring Bias, Confirmation Bias, Polarization...

I Prosociality: Social Reputation/Pride
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Allias Paradox
Credit: Maurice Allias, 1953

Pick one lottery from each experiment!
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Allias Paradox (cont...)
Credit: Maurice Allias, 1953

Usually 1A � 1B and 2B � 2A – inconsistent with EUM!
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Prospect Theory – A Descriptive Model
Credit: Daniel Kahneman and Amos Tversky, 1979

Assuming that the choice experiment has only one state,

maximize V =
∑
x∈X

v(x) · w(f(x))

x

v(x)

Unbiased cognitive behavior

Typical cognitive behavior

Reference point

p

w(p)

Unbiased cognitive behavior

0 1

1

Typical cognitive behavior
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Variants2 of Expected Utility Theory

Several other models have been proposed since 1982...

2Credit: P. J. H. Schoemaker, ”The Expected Utility Model: Its Variants, Purposes, Evidence and
Limitations”, J. Economic Literature, vol. 20, no. 2, pp. 529-563, June 1982.
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Decisions Under Ignorance

Sometimes...
I Difficult to assess subjective probabilities

I Unknown environments
I Limited computational capabilities
I Limited time/memory...

I Easy to eliminate some choices – the dominated ones!

How can we identify and eliminate the dominated choices?
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Dominance
Let the agent have

I state-dependent utility function u : X × Ω→ R,

I a subjective probability p(t) in a state t ∈ Ω.

Let the agent does not make random decisions,
i.e. lotteries are deterministic!

Definition

The choice y ∈ X is dominating in a deterministic experiment
only if ∑

t∈Ω
p(t)u(y, t) ≥

∑
t∈Ω

p(t)u(x, t)

for all x ∈ X .

Note: Dominance may hold true only in some p(t) ∈ ∆(Ω).
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Dominance (cont...)
For what distributions of p can a given choice y ∈ X be

optimal for an agent with a state-dependent utility function u?

Theorem

Given u : X × Ω → R and given y ∈ X , the set of all
p ∈ ∆(Ω) such that y is optimal is convex.

Example: Suppose X = {α, β, γ}, Ω = {t1, t2} and the
corresponding utilities are as follows.

Decision State t1 State t2
α 8 1
β 5 3
γ 4 7
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Dominance (cont...)
Let p(t1) = p. Then, we have p(t2) = 1− p.
I The decision α is optimal if and only if

8p+ 1[1− p] ≥ 5p+ 3(1− p),
8p+ 1[1− p] ≥ 4p+ 7(1− p).

In other words, p ≥ 0.6.
I The decision β is optimal if and only if

5p+ 3(1− p) ≥ 8p+ 1[1− p],
5p+ 3(1− p) ≥ 4p+ 7(1− p).

But, this is an empty set!

So, β can never be optimal for any set of beliefs!
This is called a strongly dominated choice.
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A Caveat...

Just because α is the optimal choice in state t1 and γ is the
optimal choice is state t2, we cannot claim that β (an

intermediate choice) is dominated!

Example: Consider the earlier example with the following utility
table.

Decision State t1 State t2
α 8 1
β 6 3
γ 4 7

Now, the decision β is optimal whenever 5/7 ≤ p ≤ 1/3.
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Dominance and Lotteries

Definition

A choice y ∈ X is strongly dominated by a lottery f ∈ ∆(X )
if ∑

x∈X
f(x|t)u(x, t) > u(y, t)

for all t ∈ Ω.

Theorem

Given u : X × Ω → R and any choice y ∈ X , there exists
a lottery f ∈ ∆(X ) such that y is strongly dominated by
f , if and only if there does not exist any probability distri-
bution p ∈ ∆(Ω) such that y is optimal in a deterministic
experiment.
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Weak Dominance
Definition

A choice y ∈ X is weakly dominated by a lottery f ∈ ∆(X )
if ∑

x∈X
f(x|t)u(x, t) ≥ u(y, t)

for all t ∈ Ω, and there exists at least one state in Ω such
that the above inequality is strict.

Example: Let X = {α, β}, Ω = {t1, t2} and utilities as given
below.

Decision State t1 State t2
α 5 3
β 5 1

Here, β is weakly dominated by α (due to the case where p = 1.).
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Summary

I St. Petersburg Paradox: Why do we need utility functions?

I Preference Axioms: How does ideal agent’s preferences look
like?

I Expected Utility Maximization: Ideal agents maximize
expected utilities.

I Limitations: People are not ideal agents.

I Allais Paradox and Prospect Theory: One example of a
descriptive model.

I Domination: Decision making under ignorance
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