
Missouri University of Science & Technology Department of Computer Science
Fall 2022 CS 5408: Game Theory for Computing

Homework 2b: Basic Models & Solution Concepts
Instructor: Sid Nadendla Due: October 20, 2022

Instructions: Students who did not follow any of the following instructions will be ignored
and a zero grade will be rewarded accordingly.

• The main goal of this assignment is to implement a Python package gtclab for repre-
senting and solving both normal and extensive games from scratch.

• You are not allowed to import any other Python library, other than the ones that are
already imported in the code-base.

• You are also not allowed to add, move, or remove any files, or even modify their names.

• You are also not allowed to change the signature (list of input attributes) of each
function.

Problem 1 Game Representation 4 pts.

Implement each of the following classes and methods listed below, to represent games in
either normal1, or extensive form representation:

(a) Base Classes (2 pts): These classes can be found in hw1/gtc-lab/base/

• Player(): This class contains the player label and their choice set. Therefore, define
the following four static methods accordingly:

– set choice set(): set the choice set for the player.
– get choice set(): return the choice set.
– set utility matrix(): set the utility matrix only for normal-form games.
– get utility matrix(): return the utility matrix only for normal-form games.

• State(): This class is primarily used to define states in an extensive game. There-
fore, define the following four static methods accordingly:

– set player(): set the player of a given state.
– get player(): return the player of a given state.
– set info set(): set the label of information set to which the state belongs.
– get info set(): return information set label for the given state.

1Representation of Bayesian normal-form games is beyond the scope of this assignment.

1



Homework 2b: Basic Models & Solution Concepts 2

• Tree(): This class contains the tree data structure, along with player function, utili-
ties, chance probabilities and chance probabilities. Therefore, define the following
18 static methods accordingly:

– create state(): Create a new state with a given state label and include
it in self.states dictionary only if the state is not already defined.

– add state(): If the given state is already defined outside the tree object,
then add it to the self.states dictionary.

– add player(): Add the player with given label to self.players list.
– check player exists(): Check if the player with a given label is already

defined in self.players list.
– add player to state(): Find the player with the given player label. Then,

using set player method, set the found player to the given a state object.
– set num players(): Set the given number of players to self.num players,

and also automatically create all the players and include them in self.players
using add player() method.

– get num players(): Return self.num players

– get state(): return the state for the given state label.
– set root(): set the state of the given state label as the tree’s root.
– get root(): return the label of the tree’s root node.
– is parent(): check if the state corresponding to a given parent state label

is the parent of the state corresponding to a given child state label.
– set child(): set the state corresponding to the given child state label

as a child to the state of the given state label.
– get children(): return the labels of all child nodes for the state with a given

state label.
– is leaf(): check if the state corresponding to a given state label is a leaf

node in the tree.
– set utilities(): set the utilities of all players to a state corresponding to

a given state label, if it is a leaf node.
– get utilities(): return the utilities of all players, if the state corresponding

to a given state label is a leaf node.
– set chance prob(): set the chance probability to the state of a given state label,

if it is controlled by Nature.
– get chance prob(): return the chance probability to the state of a given

state label, if it is controlled by Nature.

(b) Models (2 pts): These classes can be found in hw1/gtc-lab/models/

• NormalGame(): This class is designed to capture any complete-information normal-



Homework 2b: Basic Models & Solution Concepts 3

form game. Therefore, define the following two static methods accordingly:
– init (): This is a constructor method to initialize an object of NormalGame()

using three attributes, namely num players (an integer that represents the
total number of players in the game), num choices (a dictionary that contains
the total number of choices available at each player), and utility matrices
(a dictionary that contains utility matrices of each player). Formally, a nor-
mal form game contains three main attributes: Player set N , Choice profile
space C and utilities U . The main goal of this function is to set these quan-
tities within the objects of Player() class, using the respective attributes.
Any errors within the representation (e.g. matrix dimensionality mismatch,
incomplete representation) should be identified and appropriate flags need to
be raised.

– is two player zero sum(): This static method checks whether/not the ob-
ject of NormalGame() class represents a two-player, zero-sum game.

• ExtensiveGame(): This class is designed to capture any general extensive-form
game. Therefore, define the following three static methods accordingly:

– init (): This is a constructor method to initialize an object of ExtensiveGame()
using one attributes, namely tree (an object of Tree() that contains the de-
cision tree, player function, utilities, information sets as well as chance prob-
abilities). Formally, an extensive form game contains three main attributes:
Player set N , Choice profile space C and utility space U . The main goal of
this function is to set these quantities within the objects of Player() class,
using the respective attributes. Appropriate flags need to be raised whenever
an error is identified by is tree proper extensive game().

– get subgame(): This method constructs a new extensive game using the
subtree formed by the state corresponding to the given state label.

– is tree proper extensive game(): This method is used to check if the in-
put attribute tree in the class ExtensiveGame() represents a well-defined
extensive game. Any error within the representation (e.g. incomplete repre-
sentation, incorrect chance probabilities) should be identified and appropriate
error type should be returned.

Problem 2 Solvers for Normal-Form Games 3 pts.

Implement each of the following classes and methods listed below, to solve normal-form
games. Each of them can be found in hw1/gtc-lab/solvers/

(a) ieds(): This class solves any complete-information normal-form game using iterative
elimination of dominated strategies algorithm. Kindly implement the algorithm using
the following two methods, as discussed below:



Homework 2b: Basic Models & Solution Concepts 4

• calc reduced game(): In this method, calculate the reduced game upon comple-
tion of an entire round-robin of all players.

• is dominated(): This method checks if a given choice is dominated by any other
choice for a given player’s utility matrix.

(b) psme(): This class solves two-player, zero-sum, complete-information normal-form
games using pure strategy minimax equilibrium algorithm. If is two player zero sum()
returns FALSE, return an error message stating that psme() cannot be used on the given
game. Kindly implement the algorithm using the following method, as discussed below:

• calc psme(): This method calculates psme and returns them. If the game does
not have psme, return a flag with this information.

(c) msme(): This class solves two-player, zero-sum, complete-information normal-form
games using mixed strategy minimax equilibrium algorithm. If is two player zero sum()
returns FALSE, return an error message stating that msme() cannot be used on the given
game. Kindly implement the algorithm using the following method, as discussed below:

• calc msme(): This method calculates the mixed strategy minimax equilibrium
for a given two-player zero-sum game.

(d) psne(): This class solves any complete-information normal-form game using pure strat-
egy Nash equilibrium algorithm. Kindly implement the algorithm using the following
method, as discussed below:

• calc psne(): This method checks whether or not each choice profile is a Nash
equilibrium using is best response() method, and returns all PSNE. If the
game has no PSNE, then the method should print a message accordingly.

• is best response(): For a given utility matrix, this method checks if the given
choice is the best response to the profile of all other players’ choices.

(e) msne lp(): This class solves two-player, zero-sum, complete-information normal-form
games for mixed strategy Nash equilibrium using linear programming techniques. Kindly
implement the algorithm using the following method, as discussed below:

• calc msne lp(): Using cvxpy package to solve linear programs, compute msne
for two-player, zero-sum normal-form games. For more information, kindly refer
to the following example found in cvx’s github repository:
https://github.com/cvxpy/cvxpy/blob/master/examples/matrix_games_LP.py

Problem 3 Validation 3 pts.

(a) Extensive Game Representation: Write a Python script in Jupyter notebook that
uses your implementation of gtclab package to implement the extensive game shown
in Figure 1.

https://github.com/cvxpy/cvxpy/blob/master/examples/matrix_games_LP.py


Homework 2b: Basic Models & Solution Concepts 5

Figure 1: Extensive Game for Problem 3(a)

(b) Iterative Elimination of Dominated Strategies: Write a Python script in Jupyter
notebook that uses your implementation of gtclab package to compute Iterative Elim-
ination of Dominated Strategies algorithm for any general bimatrix game. Test your
ieds() on the example provided in Problem 2 (shown below) in HW 2a. Validate your
solution in HW2a using your own solver method.

Left Center Right
Up 1,1 2,0 2,2

Middle 0,3 1,5 4,4
Down 2,4 3,6 3,0

(c) Colonel Blotto Game: Write a Python script in Jupyter notebook that uses your
implementation of psne() and psme() in gtclab package to compute both PSNE and
PSME for the Colonel Blotto game discussed in Problem 1 of HW2a. The program
should print “This game has no PSNE/PSME,” if the bimatrix game does not have a
PSNE/PSME respectively. At the same time, if the game has multiple PSNE/PSME,
it should report all the PSNE/PSME in the game. Compare your theoretical findings
in HW2a to the output of your program.

(d) Rock-Paper-Scissors: Write a Python script in Jupyter notebook that uses your
implementation of gtclab package to compute Mixed Strategy Nash equilibrium and
Mixed Strategy minimax equilibrium for rock-paper-scissors (RPS) game discussed in
Problem 3 of HW2a. Use msne lp() and msme() solvers you implemented to find
MSNE and MSME for RPS game respectively. Compare your theoretical findings in
HW2a to the output of your program.


	Game Representation 4 pts.
	Solvers for Normal-Form Games 3 pts.
	Validation 3 pts.

