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Problem 1 Lotteries, Preferences & Axioms 4 pts.

Consider a choice experiment where an agent is presented with four lotteries f1, f2, f3 and
f4. Assume that the agent’s preference ordering be f1 %E f2 %E f3 %E f4, which is evaluated
based on some event E ∈ E . Suppose that the agent also exhibits indifferences between the
following pairs of lotteries:

• f2 ∼E 0.6f1 + 0.4f4

• f3 ∼E 0.2f1 + 0.8f4

Assuming that the agent satisfies all the 9 preference axioms of decision theory (presented
in slides 12-13 in Topic 1: Decision Theory lecture notes), if lotteries f and g are defined as

• f = 0.15f1 + 0.50f2 + 0.15f3 + 0.20f4,

• g = 0.25f1 + 0.25f2 + 0.25f3 + 0.25f4,

prove that f %E g.

Solution:

Let the utilities of f1, f2, f3 and f4 be u1, u2, u3 and u4 respectively. Then,
u2 = 0.6u1 + 0.4u4, and u3 = 0.2u1 + 0.8u4. (1)

If the utilities of lotteries f and g be u and v respectively, we have
u = 0.15u1 + 0.5u2 + 0.15u3 + 0.4u4,

v = 0.25u1 + 0.25u2 + 0.25u3 + 0.25u4.
(2)

Substituting Equations (1) in Equations (2), we have

u = 0.15u1 + 0.5
(

0.6u1 + 0.4u4

)
+ 0.15

(
0.2u1 + 0.8u4

)
+ 0.4u4 = 0.48u1 + 0.52u4,

v = 0.25u1 + 0.25
(

0.6u1 + 0.4u4

)
+ 0.25

(
0.2u1 + 0.8u4

)
+ 0.25u4 = 0.45u1 + 0.55u4.

(3)
Then, we have u − v = 0.03(u1 − u4) ≥ 0, since u1 ≥ u2 ≥ u3 ≥ u4 due to the preference
ordering on f1, f2, f3 and f4.
In other words, we have f %E g. �
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Problem 2 Expected Utility Maximization 4 pts.

A company must decide its investments between three mutually exclusive projects:

• Project P provides a net profit of $50 million with a probability 0.75, and a net loss
of $10 million with probability 0.25.

• Project Q provides a net profit of $100 million with a probability 0.6, and a net loss
of $40 million with probability 0.4.

• Project R provides a net profit of $200 million with a probability 0.5, and a net loss
of $100 million with probability 0.5.

Suppose that the CEO of the corporation is risk averse and maximizes a concave-increasing
utility. Then, determine his preferences over P , Q and R.
Note: Bernoulli’s logarithmic utility is not defined for losses, as they are negative quantities.
Therefore, if you prefer working out with an example, one way out is to consider a shifted-
logarithm log(x + a), where losses beyond a are treated as infinite in value. However, for
full credits, you should prove this result for any concave-increasing utility function in this
universe.

Solution:

Without any loss of generality, let u(x) denote the utility of obtaining x million dollars. Note
that, the losses incurred by the agent are represented by negative values of x. Then, we can
compute the utilities of projects P , Q and R as

uP = 0.75 · u(50) + 0.25 · u(−10)

uQ = 0.6 · u(100) + 0.4 · u(−40)

uR = 0.5 · u(200) + 0.5 · u(−100)

(4)

Given that the CEO is a risk-averse agent with a concave utility (i.e. we have u(λx + (1−
λ)y) ≥ λu(x) + (1−λ)u(y)), we can find lower bounds to the utilities u(−40), u(−10), u(50)
and u(100) in terms of u(200) and u(−100), as shown below.

u(−40) = u
(1

5 × 200 + 4
5 × (−100)

)
>

1
5 × u(200) + 4

5 × u(−100)

u(−10) = u
( 3

10 × 200 + 7
10 × (−100)

)
>

3
10 × u(200) + 7

10 × u(−100)

u(50) = u
(1

2 × 200 + 1
2 × (−100)

)
>

1
2 × u(200) + 1

2 × u(−100)

u(100) = u
(2

3 × 200 + 1
3 × (−100)

)
>

2
3 × u(200) + 1

3 × u(−100)

(5)
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Similarly, we can also evaluate lower bounds to the utilities u(−10) and u(50) in terms of
u(100) and u(−40), as shown below.

u(−10) = u
(1

4 × 100 + 3
4 × (−40)

)
>

1
4 × u(100) + 3

4 × u(−40)

u(50) = u
( 9

14 × 100 + 5
14 × (−40)

)
>

9
14 × u(100) + 5

14 × u(−40)
(6)

Substituting the inequalities in Equation (5) in uP and uQ defined in Equation (4), we obtain
uP = 0.75 · u(50) + 0.25 · u(−10)

> 0.75
(1

2 × u(200) + 1
2 × u(−100)

)
+ 0.25

( 3
10 × u(200) + 7

10 × u(−100)
)

= 9
20 × u(200) + 11

20 × u(−100)

uQ = 0.6 · u(100) + 0.4 · u(−40)

> 0.6
(2

3 × u(200) + 1
3 × u(−100)

)
+ 0.4

(1
5 × u(200) + 4

5 × u(−100)
)

= 12
25 × u(200) + 13

25 × u(−100)

(7)

In such a case, the comparison in utilities of P and Q with respect to that of R can be
evaluated as

uP − uR > − 1
20 ×

(
u(200)− u(−100)

)
uQ − uR > − 1

25 ×
(
u(200)− u(−100)

) (8)

A lower bound can be evaluated for uP in a similar manner in terms of u(100) and u(−40)
using Equation (6), as shown below:

uP = 0.75 · u(50) + 0.25 · u(−10)

> 0.75
(1

4 × u(100) + 3
4 × u(−40)

)
+ 0.25

( 9
14 × u(100) + 5

14 × u(−40)
)

= 39
112u(100) + 73

112u(−40)

(9)

Now, we can also compare uP with uQ by evaluating the bound of the difference

uP − uQ > −141
560 ×

(
u(100)− u(−40)

)
. (10)

Note that the quantities on the right hand side of both inequalities in Equations (8) and
(10) are negative, when the utility function is increasing with reward. In other words, the
preferences over P , Q and R cannot be determined for a concave increasing utility, in general.

Note: However, if the CEO is risk-seeking with a convex increasing function, then we can
show that the CEO can determine his/her preferences to be R � Q � P .
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Problem 3 Expected Utility Maximization 4 pts.

Suppose that Alice won a competition. As a reward, she was asked to choose one of the
following two options:

Option 1: A tablet with probability 0.3, or a motorcycle with probability 0.7.

Option 2: A cell phone with probability 0.3, or a laptop with probability 0.2, or a motorcycle
with probability 0.5.

Assuming that Alice maximizes her expected utility, if she prefers

cell phone ≺ tablet ≺ laptop ≺ motorcycle,

show that Option 1 � Option 2.

Solution:

Let the utilities of cell phone, tablet, laptop and motorcycle be u1, u2, u3 and u4 respectively.
Also, let the utilities of Option 1 and Option 2 be v1 and v2 respectively.
Then, we have

v1 = 0.3u2 + 0.7u4, and v2 = 0.3u1 + 0.2u3 + 0.5u4. (11)

Comparing v1 and v2, we obtain

v1 − v2 = 0.3
(
u2 − u1

)
+ 0.2

(
u4 − u3

)
≥ 0. (12)

Therefore, Alice prefers Option 1 over Option 2. �
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Problem 4 Limitations of EUM 4 pts.

Daniel Ellsberg proposed the following thought-experiment1 (known as Ellsberg Paradox) in
1961. An urn contains 90 balls, 30 of which are red. The other 60 are black or yellow, in
unknown proportions. One ball will be drawn randomly from the urn. In this experiment,
consider yourself as a decision maker.

(a) First, you must make a choice between Gamble A and Gamble B:

• Gamble A: You win $100 if the ball is red.
• Gamble B: You win $100 if the ball is black.

Which would you choose, and why?

(b) Next, you must make a choice between Gamble C and Gamble D:

• Gamble C: You win $100 if the ball is either red or yellow.
• Gamble D: You win $100 if the ball is either black or yellow.

Which would you choose, and why?

(c) Most people strongly prefer Gambles A and D over Gambles B and C respectively.
Explain why this pattern of choices violates expected utility theory.

(d) Implement Ellsberg Paradox in Python using abstract classes within the Jupyter Note-
book provided to you in your Gitlab repositories. Rename your notebook as
“<last name> FS2021 CS5408 HW1 4d.ipynb”.

Solution:

(a) and (b): Students are free to pick any one gamble and explain the latent rationality
behind their choice.

(c) Let α denote the fraction of black balls amongst the remaining unknown 60 balls. Note
that α can also be interpreted as the conditional probability of a ball being black, given that
it is not a red ball. In other words, the urn has 30 red balls, 60α black balls and 60(1− α)
yellow balls.
If the agent follows EUM, then the utilities of gambles A, B, C and D are given by

uA = P(red)× $100 + P(not red)× $0

= 30
90 × 100 + 30

90 × 0

= 100
3 ,

(13)

1A similar experiment was also proposed by John Maynard Keynes in 1921.
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uB = P(black)× $100 + P(not black)× $0

= 60α
90 × 100 + 90− 60α

90 × 0

= 200α
3 ,

(14)

uC = P(red/yellow)× $100 + P(not red/yellow)× $0

= 90− 60α
90 × 100 + 60α

90 × 0

=
(

1− 2α
3

)
100,

(15)

uD = P(black/yellow)× $100 + P(not black/yellow)× $0

= 60
90 × 100 + 30

90 × 0

= 200
3 ,

(16)

Given A � B and D � C, if the agent follows EUM, we expect uA > uB and uD > uC . In
other words, we need

uA > uB ⇒ 100
3 >

200α
3 ⇒ α <

1
2 ,

uD > uC ⇒ 200
3 >

(1− 2α
3

)
100 ⇒ α >

1
2 .

(17)

This is a contradiction! Therefore, any agent who exhibits preference orders A � B and
D � C does not follow expected utility maximization. �
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Problem 5 Prospect Theory 4 pts.

Let your utility function for gains and losses be

u(x) =
x, if x ≥ 0
λx, if x < 0,

where λ > 0 is an unknown parameter and your probability weighting function is w(p) = p.
Consider the following two gambles:

• P = {win $150 with probability 0.5; loose $100 with probability 0.5}

• Q = {win $200 with probability 0.5; loose $100 with probability 0.5}

Suppose that you have the following preferences:

• prefer getting nothing for sure over the gamble P ,

• prefer the gamble Q over getting nothing for sure.

Then, what is the range of λ that is consistent with the choices above?

Solution:

Given w(p) = p and u(x) =
x, if x ≥ 0,
λx, otherwise,

let N denote the gamble wherein the agent

gets nothing for sure. In other words, if the agent chooses N , he/she obtains a reward of $0
with probability 1.
Then, the prospect theoretic utilities of gambles P , Q and N are given by

VP = 0.5× $150 + 0.5
(
λ(−$100)

)
= 75− 50λ

VQ = 0.5× $200 + 0.5
(
λ(−$100)

)
= 100− 50λ

VN = 1× $0 = 0

(18)

Given that N � P and Q � N , we expect

VN > VP ⇒ 0 > 75− 50λ ⇒ λ >
3
2

VQ > VN ⇒ 100− 50λ > 0 ⇒ λ < 2
(19)

respectively. Combining the above two inequalities, we have 3
2 < λ < 2. �
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Problem 6 Domination 4 pts.

Suppose an agent is presented with a choice set X = {α, β, γ}, where the choice experiment
can take the states Ω = {t1, t2, t3}. If the utilities at the agent are given as shown in the
table below,

Decision State t1 State t2 State t3
α 4 1 -3
β 3 2 5
γ 0 1 6

(a) Find the region in ∆(Ω) in which α is optimal.

(b) Find the region in ∆(Ω) in which β is optimal.

(c) Find the region in ∆(Ω) in which γ is optimal.

(d) Implement this experiment in Python using the Jupyter Notebooks provided in your
Gitlab repositories and validate your theoretical findings in (a)-(c). Rename your
Jupyter Notebook as
“<last name> FS2021 CS5408 HW1 6d.ipynb”.

Solution:

Let the probability of states t1, t2 and t3 be denoted as p1, p2 and p3 = 1−p1−p2 respectively.
Then, the expected utilities of α, β and γ are given by

uα = 4 · p1 + 1 · p2 + (−3)(1− p1 − p2) = 7p1 + 4p2 − 3

uβ = 3 · p1 + 2 · p2 + 5(1− p1 − p2) = −2p1 − 3p2 + 5

uγ = 0 · p1 + 1 · p2 + 6(1− p1 − p2) = −6p1 − 5p2 + 6
(20)

respectively.
(a) Optimality of α: In order to find the region where α is optimal, we need to evaluate
the inequalities: uα > uβ and uα > uγ. In other words, we expect

uα > uβ ⇒ 7p1 + 4p2 − 3 > −2p1 − 3p2 + 5 ⇒ 9p1 + 7p2 > 8

uα > uγ ⇒ 7p1 + 4p2 − 3 > −6p1 − 5p2 + 6 ⇒ 13p1 + 9p2 > 9.
(21)

In addition, we also need to ensure p1 ≥ 0, p2 ≥ 0, p3 ≥ 0 (or, p1 + p2 ≤ 1).
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In other words, the region on the simplex where α is the optimal choice is given by

Rα =
{

(p1, p2) ∈ [0, 1]2
∣∣∣∣ 9p1 + 7p2 > 8, 13p1 + 9p2 > 9, and p1 + p2 ≤ 1

}
. (22)

(b) Optimality of β: In order to find the region where β is optimal, we need to evaluate
the inequalities: uβ > uα and uβ > uγ. In other words, we expect

uβ > uα ⇒ −2p1 − 3p2 + 5 > 7p1 + 4p2 − 3 ⇒ 9p1 + 7p2 < 8

uβ > uγ ⇒ −2p1 − 3p2 + 5 > −6p1 − 5p2 + 6 ⇒ 4p1 + 2p2 > 1.
(23)

In addition, we also need to ensure p1 ≥ 0, p2 ≥ 0, p3 ≥ 0 (or, p1 + p2 ≤ 1).
In other words, the region on the simplex where β is the optimal choice is given by

Rβ =
{

(p1, p2) ∈ [0, 1]2
∣∣∣∣ 9p1 + 7p2 < 8, 4p1 + 2p2 > 1, and p1 + p2 ≤ 1

}
. (24)

(c) Optimality of γ: In order to find the region where γ is optimal, we need to evaluate
the inequalities: uγ > uα and uγ > uβ. In other words, we expect

uγ > uα ⇒ −6p1 − 5p2 + 6 > 7p1 + 4p2 − 3 ⇒ 13p1 + 9p2 < 9

uγ > uβ ⇒ −6p1 − 5p2 + 6 > −2p1 − 3p2 + 5 ⇒ 4p1 + 2p2 < 1.
(25)

In addition, we also need to ensure p1 ≥ 0, p2 ≥ 0, p3 ≥ 0 (or, p1 + p2 ≤ 1).
In other words, the region on the simplex where γ is the optimal choice is given by

Rγ =
{

(p1, p2) ∈ [0, 1]2
∣∣∣∣ 13p1 + 9p2 < 9, 4p1 + 2p2 < 1, and p1 + p2 ≤ 1

}
. (26)
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Problem 7 St. Petersburg Paradox (Extra Credit: 2 pt.)

Model the choice experiment in St. Petersburg paradox formally as a lottery, i.e. clearly
define the states, their corresponding probabilities, choices and a conditional distribution on
the choice set given the state.

Solution:

In Saint Petersburg paradox experiment, each agent is expected to choose their stopping
time, i.e. the number of iterations they wish to play at the beginning of the experiment. In
other words, the choice set is given by

C = {1, 2, · · · }. (27)

If the agent were to employ a lottery on C, they need to choose a probability vector π =
{π1, π2, · · · } as his/her lottery, where πn = P(agent picks his stopping time as n). Note that,
since ∞∑

n=1
πn = 1 (28)

is an infinite sum, π is always a sparse vector.
The state of this experiment at iteration k (for any k ∈ C) is determined by the outcome of
the sequence of coin tosses, i.e.

sk = (s1, · · · , sk), (29)
where si ∈ {H,T} is the outcome of the coin toss at the ith iteration. Consequently, we have
P(si = H) = P(si = T ) = 1

2. In other words, the state uncertainty at the kth iteration is
given by

P(sk = s) =
(1

2

)k
, (30)

for any s ∈ {H,T}k. �
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Problem 8 Allias Paradox (Extra Credit: 2 pt.)

Prove that 1A � 1B and 2B � 2A violates expected utility maximization (EUM) framework.

Solution:

Let u(x) denote the utility of winning x million dollars. In other words, if the agent prefers
1A � 1B, we have

u(1) > 0.89u(1) + 0.01u(0) + 0.1u(5) ⇒ 0.11u(1) > 0.01u(0) + 0.1u(5). (31)

Similarly, if the agent prefers 2B � 2A, we have

0.9u(0) + 0.1u(5) > 0.89u(0) + 0.11u(1) ⇒ 0.11u(1) < 0.01u(0) + 0.1u(5). (32)

Note that it is impossible to satisfy Equations (31) and (32) simultaneously using any feasible
utility function. Therefore, we have a violation to expected utility maximization. �
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